Multivariate methods for identifying multitask/multimodal brain imaging biomarkers

识别多任务/多模式脑成像生物标志物的多变量方法

基本信息

  • 批准号:
    10434066
  • 负责人:
  • 金额:
    $ 52.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-04-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The brain is extremely complex as we know, and involves a complicated interplay between functional infor- mation interacting with a structural (but not static) substrate. Brain imaging technology provides a way to sample various aspects of the brain albeit incompletely, providing a rich set of multitask and multimodal information. The field has advanced significantly in its approach to multimodal data, as there are more studies correlating, e.g. functional and structural measures. However, the vast majority of studies still ignore the joint information among two or more modalities or tasks. Such information is critical to consider as each brain imaging modality reports on a different aspect of the brain (e.g. gray matter integrity, blood flow changes, white matter integrity). The field is still striving to understand how to diagnose and treat complex mental illness, such as schizophrenia, bipolar disorder, depression, and others, and ignoring the joint information among tasks and modalities misses a critical, but available, part of the puzzle. Combining multimodal imaging data is not easy since, among other reasons, the combination of multiple data sets consisting of thousands of voxels or timepoints yields a very high dimen- sional problem, requiring appropriate data reduction strategies. In the previous phase of the project we devel- oped advanced approaches to capture high-dimensional relationships among 2 or more modalities. Our work continues to strongly support the benefits of multimodal data fusion to both provide a more complete picture of brain function and structure, but also to improve our ability to study and predict the impact of complex mental illness. In this new phase of the project, we will focus on methods that can fill some existing gaps, such as the ability to bridge spatial/temporal as well as structural/functional connectivity scales. We also propose a novel framework to integrate unimodal and multimodal features called chromatic fusion, which searches for combina- tions of multimodal `notes' which occupy a unique position in a latent (or dictionary) space. The proposed meth- ods will be validated using simulations, hybrid-data, and large N normative imaging data. Our proposed approach will be thoroughly tested using this large data set which includes multiple illnesses that have overlapping symp- toms and which can sometimes be misdiagnosed and treated with the wrong medications for months or years (schizophrenia, bipolar disorder, and unipolar depression). We will provide open source tools and release data throughout the duration of the project via GitHub and the NITRIC repository, hence enabling other investigators to compare their own methods with our own as well as to apply them to a large variety of brain disorders. 37
项目摘要/摘要 据我们所知,大脑非常复杂,并且涉及功能性信息之间的复杂相互作用 与结构(但不是静态)底物相互作用。脑成像技术提供了一种样品的方法 大脑的各个方面尽管并非完全,提供了丰富的多任务和多模式信息。这 由于更多的研究相关,例如 功能和结构措施。但是,绝大多数研究仍然忽略了共同信息 两种或多种方式或任务。这样的信息对于每种大脑成像方式报告至关重要 在大脑的不同方面(例如灰质完整性,血流变化,白质完整性)。领域 仍在努力了解如何诊断和治疗复杂的精神疾病,例如精神分裂症,双极 障碍,抑郁症和其他人,忽略任务和方式之间的共同信息错过了关键, 但可用,这是难题的一部分。组合多模式成像数据并不容易,因为除其他原因, 由数千个体素或时间点组成的多个数据集的组合产生的尺寸很高 需要适当的数据减少策略。在该项目的前阶段,我们开发 OPED先进的方法以捕获两种或更多方式之间的高维关系。我们的工作 继续强烈支持多模式数据融合的好处,以提供更完整的图片 大脑功能和结构,同时也提高我们学习和预测复杂心理影响的能力 疾病。在项目的这个新阶段,我们将重点关注可以填补一些现有空白的方法,例如 能够桥接空间/时间和结构/功能连接量表的能力。我们也提出了一本小说 整合称为色融合的单形和多模式特征的框架,该特征搜索组合 多模式的“音符”,在潜在(或词典)空间中占据了独特的位置。提出的甲基苯丙胺 OD将使用模拟,混合数据和大型N规范成像数据进行验证。我们提出的方法 将使用此大数据集对其进行彻底测试,该数据集包括多种疾病,这些疾病重叠了Symp- TOMS有时会被误诊和用错误的药物误诊和治疗 (精神分裂症,躁郁症和单极抑郁症)。我们将提供开源工具并发布数据 在项目的整个过程中,通过GitHub和Nitric存储库,使其他研究人员能够 将自己的方法与我们自己的方法进行比较,并将其应用于各种各样的脑部疾病。 37

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

VINCE D CALHOUN其他文献

VINCE D CALHOUN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('VINCE D CALHOUN', 18)}}的其他基金

ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuits
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
  • 批准号:
    10410073
  • 财政年份:
    2019
  • 资助金额:
    $ 52.13万
  • 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuit
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
  • 批准号:
    10656608
  • 财政年份:
    2019
  • 资助金额:
    $ 52.13万
  • 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析PD
  • 批准号:
    10252236
  • 财政年份:
    2019
  • 资助金额:
    $ 52.13万
  • 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
  • 批准号:
    10197867
  • 财政年份:
    2019
  • 资助金额:
    $ 52.13万
  • 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
  • 批准号:
    10443779
  • 财政年份:
    2019
  • 资助金额:
    $ 52.13万
  • 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
  • 批准号:
    9811339
  • 财政年份:
    2019
  • 资助金额:
    $ 52.13万
  • 项目类别:
Flexible multivariate models for linking multi-scale connectome and genome data in Alzheimer's disease and related disorders
用于连接阿尔茨海默病和相关疾病的多尺度连接组和基因组数据的灵活多变量模型
  • 批准号:
    10157432
  • 财政年份:
    2019
  • 资助金额:
    $ 52.13万
  • 项目类别:
Mapping the developing infant connectome
绘制发育中的婴儿连接组图
  • 批准号:
    10413004
  • 财政年份:
    2019
  • 资助金额:
    $ 52.13万
  • 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
  • 批准号:
    10645089
  • 财政年份:
    2019
  • 资助金额:
    $ 52.13万
  • 项目类别:
COINSTAC: decentralized, scalable analysis of loosely coupled data
COINSTAC:松散耦合数据的去中心化、可扩展分析
  • 批准号:
    9268713
  • 财政年份:
    2015
  • 资助金额:
    $ 52.13万
  • 项目类别:

相似国自然基金

无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
  • 批准号:
    12301508
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
  • 批准号:
    62301532
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
  • 批准号:
    62303204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
  • 批准号:
    62303197
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 52.13万
  • 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
  • 批准号:
    10637391
  • 财政年份:
    2023
  • 资助金额:
    $ 52.13万
  • 项目类别:
Ethics Core (FABRIC)
道德核心 (FABRIC)
  • 批准号:
    10662376
  • 财政年份:
    2023
  • 资助金额:
    $ 52.13万
  • 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
  • 批准号:
    10760409
  • 财政年份:
    2023
  • 资助金额:
    $ 52.13万
  • 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
  • 批准号:
    10831226
  • 财政年份:
    2023
  • 资助金额:
    $ 52.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了