Context-specific and combinatorial genetic regulatory grammars in diabetes
糖尿病的上下文特定和组合遗传调控语法
基本信息
- 批准号:10434740
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesAmericanAmino Acid SequenceAmino AcidsAnimal ModelBeta CellBinding SitesBiologicalBiological AssayBiological ProcessBlood VesselsCRISPR/Cas technologyCell physiologyChromatinChromosomesCodeComplexComputer AnalysisCoupledDNADNA BindingDNA Binding DomainDNA SequenceDevelopmentDiabetes MellitusDiagnosisDiseaseDrug ScreeningEnhancersEnvironmentEnvironmental Risk FactorExonsFoundationsFunctional disorderGenesGeneticGenetic CodeGenetic TranscriptionGenetic VariationGenomeGenomic approachGlucoseGoalsHumanIn SituInsulinIslet CellIslets of LangerhansKnowledgeLeadMapsMeasuresMediatingMedical Care CostsMolecularMolecular ProfilingMonitorMorbidity - disease rateMutationNeurologicNon-Insulin-Dependent Diabetes MellitusNucleotidesPersonsPhenotypePhysiologicalPositioning AttributePrediabetes syndromeProteinsRFX regulatory factorRNARegulationRegulator GenesRegulatory ElementReporterReportingResearchResolutionRiskRodentSingle Nucleotide PolymorphismSiteStretchingSurveysSyndromeSystemTestingTimeTranscriptional RegulationTranslatingUntranslated RNAVariantWagesWorkcombinatorialcostdiabetes mellitus geneticsdiabeticepigenomeexperimental analysisfasting glucosefunctional genomicsgenetic signaturegenetic variantgenome editinggenome wide association studyisletneonatal diabetes mellitusnovelprecision drugsprecision geneticspromoterresponserisk variantscreeningtraittranscription factortranscriptometranslational approach
项目摘要
Over 29 million Americans are diagnosed with diabetes and another 86 million have prediabetes,
resulting in an estimated $245 billion in annual medical costs and lost work and wages
(https://www.cdc.gov/features/diabetesfactsheet/). Diabetes is a complex disease that results from the
combined effects of genetic and environmental factors over time. Both common and rare genetic forms of
diabetes share transcriptional dysregulation of insulin-producing beta cells in pancreatic islets as a hallmark.
For example, the most common form of diabetes, type 2 diabetes (T2D), has been genetically dissected with
multiple genome wide association studies (GWAS) that have collectively revealed >100 independent disease
and related-trait associated single nucleotide polymorphisms (SNPs). Most of these loci localize to non-coding
regions and have relatively small effect sizes. Using functional genomics approaches, we and others have
shown these SNPs are highly significantly enriched to overlap important transcriptional regulatory elements like
stretch enhancers (SE) or enhancer clusters that are specific to pancreatic islets. More recently, we found that
T2D GWAS loci were strikingly and specifically enriched in islet Regulatory Factor X (RFX) footprint motifs.
Remarkably, within and across independent loci, T2D risk alleles that overlap with RFX footprints uniformly
disrupt the RFX motifs at high-information content positions. Importantly, rare autosomal recessive mutations
that alter DNA-contacting amino acids in the DNA binding domain of RFX6 result in Mitchell–Riley syndrome,
which is characterized by neonatal diabetes. Our findings could represent a connection between rare coding
variation in the islet master TF RFX6 and common noncoding variations in multiple target sites for this TF. The
impact of these variations mirror the expected physiological effect, with coding variants that result in neonatal
diabetes and noncoding variants that result in later-onset T2D. However, it is presently unknown how these
different classes of genetic variants might interact. To help close these major gaps in knowledge, we will build
mechanistic understanding of genetic variant effects on transcriptional regulation and the impact these effects
could have on diabetes. We will accomplish this through integrative computational analyses of experimental
measures of genome, epigenome, and transcriptome profile variation across cellular states and species
coupled with novel high-throughput reporter assays to test the functional relevance of targeted genetic
perturbations. The resulting increase in understanding of diabetes genetic regulatory grammars will provide a
foundation for interpreting disease-relevant genetic variation and providing more precise disease predictions.
超过2900万美国人被诊断出患有糖尿病,另有8600万人患有糖尿病,
导致估计每年2450亿美元的医疗费用以及损失的工作和工资
(https://www.cdc.gov/features/diabetesfactsheet/)。糖尿病是一种复杂的疾病,由
随着时间的推移,遗传和环境因素的结合影响。普通和稀有遗传形式的形式
糖尿病具有胰岛胰岛中产生胰岛素β细胞的转录失调作为标志。
例如,最常见的糖尿病形式是2型糖尿病(T2D),已与遗传解剖
多个基因组宽结合研究(GWAS)统称> 100个独立疾病
和相关特征相关的单核苷酸多态性(SNP)。其中大多数本地化为非编码
区域,效应大小相对较小。使用功能基因组学方法,我们和其他人都有
显示这些SNP高度富集以重叠重要的转录调节元素,例如
特定于胰岛的拉伸增强剂(SE)或增强子簇。最近,我们发现
T2D GWAS基因座被特别富集在胰岛调节因子X(RFX)足迹基序中。
值得注意的是,在独立局部内外,T2D的风险等位基因与RFX足迹重叠
在高信息含量位置下破坏RFX图案。重要的是,罕见的常染色体隐性突变
改变了RFX6的DNA结合结构域中的接触DNA接触氨基酸会导致Mitchell-Riley综合征,
以新生儿糖尿病为特征。我们的发现可能代表稀有编码之间的联系
胰岛主TF RFX6的变化以及该TF多个目标位点中的常见非编码变化。这
这些变化的影响反映了预期的物理效应,并带有导致新生儿的编码变体
糖尿病和非编码变体导致后来发作的T2D。但是,这是未知的
不同类别的遗传变异可能相互作用。为了帮助缩小知识的主要差距,我们将建立
对遗传变异对转录调控的影响的机械理解以及这些影响的影响
可能患有糖尿病。我们将通过实验的集成计算分析来实现这一目标
基因组,表观基因组和跨细胞状态和物种的转录组轮廓变化的度量
再加上新型的高通量记者测定法,以测试目标通用的功能相关性
扰动。仅遗传调节语法的糖尿病的了解的增加将提供
解释与疾病相关的遗传变异并提供更精确的疾病预测的基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen CJ Parker其他文献
Stephen CJ Parker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen CJ Parker', 18)}}的其他基金
Context-specific and combinatorial genetic regulatory grammars in diabetes
糖尿病的上下文特定和组合遗传调控语法
- 批准号:
10172891 - 财政年份:2018
- 资助金额:
$ 40.5万 - 项目类别:
Synthesizing genome, epigenome, and transcriptome datasets in type 2 diabetes.
合成 2 型糖尿病的基因组、表观基因组和转录组数据集。
- 批准号:
9068907 - 财政年份:2015
- 资助金额:
$ 40.5万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Creating an advanced multi-ancestral resource and tools for short tandem repeat analysis in the AOURP researcher workbench
在 AOURP 研究人员工作台中创建先进的多祖先资源和工具,用于短串联重复分析
- 批准号:
10798717 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Deciphering unintended large gene modifications in gene editing for sickle cell disease
破译镰状细胞病基因编辑中意外的大基因修饰
- 批准号:
10720685 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别: