Context-specific and combinatorial genetic regulatory grammars in diabetes
糖尿病的上下文特定和组合遗传调控语法
基本信息
- 批准号:10434740
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesAmericanAmino Acid SequenceAmino AcidsAnimal ModelBeta CellBinding SitesBiologicalBiological AssayBiological ProcessBlood VesselsCRISPR/Cas technologyCell physiologyChromatinChromosomesCodeComplexComputer AnalysisCoupledDNADNA BindingDNA Binding DomainDNA SequenceDevelopmentDiabetes MellitusDiagnosisDiseaseDrug ScreeningEnhancersEnvironmentEnvironmental Risk FactorExonsFoundationsFunctional disorderGenesGeneticGenetic CodeGenetic TranscriptionGenetic VariationGenomeGenomic approachGlucoseGoalsHumanIn SituInsulinIslet CellIslets of LangerhansKnowledgeLeadMapsMeasuresMediatingMedical Care CostsMolecularMolecular ProfilingMonitorMorbidity - disease rateMutationNeurologicNon-Insulin-Dependent Diabetes MellitusNucleotidesPersonsPhenotypePhysiologicalPositioning AttributePrediabetes syndromeProteinsRFX regulatory factorRNARegulationRegulator GenesRegulatory ElementReporterReportingResearchResolutionRiskRodentSingle Nucleotide PolymorphismSiteStretchingSurveysSyndromeSystemTestingTimeTranscriptional RegulationTranslatingUntranslated RNAVariantWagesWorkcombinatorialcostdiabetes mellitus geneticsdiabeticepigenomeexperimental analysisfasting glucosefunctional genomicsgenetic signaturegenetic variantgenome editinggenome wide association studyisletneonatal diabetes mellitusnovelprecision drugsprecision geneticspromoterresponserisk variantscreeningtraittranscription factortranscriptometranslational approach
项目摘要
Over 29 million Americans are diagnosed with diabetes and another 86 million have prediabetes,
resulting in an estimated $245 billion in annual medical costs and lost work and wages
(https://www.cdc.gov/features/diabetesfactsheet/). Diabetes is a complex disease that results from the
combined effects of genetic and environmental factors over time. Both common and rare genetic forms of
diabetes share transcriptional dysregulation of insulin-producing beta cells in pancreatic islets as a hallmark.
For example, the most common form of diabetes, type 2 diabetes (T2D), has been genetically dissected with
multiple genome wide association studies (GWAS) that have collectively revealed >100 independent disease
and related-trait associated single nucleotide polymorphisms (SNPs). Most of these loci localize to non-coding
regions and have relatively small effect sizes. Using functional genomics approaches, we and others have
shown these SNPs are highly significantly enriched to overlap important transcriptional regulatory elements like
stretch enhancers (SE) or enhancer clusters that are specific to pancreatic islets. More recently, we found that
T2D GWAS loci were strikingly and specifically enriched in islet Regulatory Factor X (RFX) footprint motifs.
Remarkably, within and across independent loci, T2D risk alleles that overlap with RFX footprints uniformly
disrupt the RFX motifs at high-information content positions. Importantly, rare autosomal recessive mutations
that alter DNA-contacting amino acids in the DNA binding domain of RFX6 result in Mitchell–Riley syndrome,
which is characterized by neonatal diabetes. Our findings could represent a connection between rare coding
variation in the islet master TF RFX6 and common noncoding variations in multiple target sites for this TF. The
impact of these variations mirror the expected physiological effect, with coding variants that result in neonatal
diabetes and noncoding variants that result in later-onset T2D. However, it is presently unknown how these
different classes of genetic variants might interact. To help close these major gaps in knowledge, we will build
mechanistic understanding of genetic variant effects on transcriptional regulation and the impact these effects
could have on diabetes. We will accomplish this through integrative computational analyses of experimental
measures of genome, epigenome, and transcriptome profile variation across cellular states and species
coupled with novel high-throughput reporter assays to test the functional relevance of targeted genetic
perturbations. The resulting increase in understanding of diabetes genetic regulatory grammars will provide a
foundation for interpreting disease-relevant genetic variation and providing more precise disease predictions.
超过 2900 万美国人被诊断患有糖尿病,另外 8600 万美国人患有糖尿病前期,
导致每年估计 2,450 亿美元的医疗费用以及工作和工资损失
(https://www.cdc.gov/features/diabetesfactsheet/) 糖尿病是一种由糖尿病引起的复杂疾病。
随着时间的推移,遗传和环境因素的综合影响,包括常见和罕见的遗传形式。
糖尿病的共同特点是胰岛中产生胰岛素的β细胞的转录失调。
例如,最常见的糖尿病形式,2 型糖尿病 (T2D),已通过基因剖析
多项全基因组关联研究 (GWAS) 共同揭示了超过 100 种独立疾病
这些基因座大多数定位于非编码区。
我们和其他人使用功能基因组学方法,发现了区域内的区域,并且效应大小相对较小。
显示这些 SNP 高度富集,与重要的转录调控元件重叠,例如
最近,我们发现胰岛特异性的拉伸增强子(SE)或增强子簇。
T2D GWAS 位点在胰岛调节因子 X (RFX) 足迹基序中显着富集。
值得注意的是,在独立基因座之内和之间,T2D 风险等位基因与 RFX 足迹一致重叠
重要的是,罕见的常染色体隐性突变破坏了 RFX 基序。
改变 RFX6 DNA 结合域中 DNA 接触氨基酸会导致 Mitchell-Riley 综合征,
我们的研究结果可能代表了罕见编码之间的联系。
胰岛主 TF RFX6 中的变异以及该 TF 的多个目标位点中常见的非编码变异。
这些变异的影响反映了预期的生理效应,编码变异导致新生儿
糖尿病和非编码变异导致迟发性 T2D 然而,目前尚不清楚这些是如何发生的。
为了帮助缩小这些主要的知识差距,我们将建立不同类别的遗传变异。
遗传变异对转录调控影响的机制理解以及这些影响的影响
我们将通过实验的综合计算分析来实现这一目标。
测量跨细胞状态和物种的基因组、表观基因组和转录组谱变化
结合新颖的高通量报告分析来测试目标遗传的功能相关性
由此产生的对糖尿病遗传调控语法的理解的增加将提供一种新的方法。
为解释与疾病相关的遗传变异和提供更精确的疾病预测奠定了基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen CJ Parker其他文献
Stephen CJ Parker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen CJ Parker', 18)}}的其他基金
Context-specific and combinatorial genetic regulatory grammars in diabetes
糖尿病的上下文特定和组合遗传调控语法
- 批准号:
10172891 - 财政年份:2018
- 资助金额:
$ 40.5万 - 项目类别:
Synthesizing genome, epigenome, and transcriptome datasets in type 2 diabetes.
合成 2 型糖尿病的基因组、表观基因组和转录组数据集。
- 批准号:
9068907 - 财政年份:2015
- 资助金额:
$ 40.5万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Creating an advanced multi-ancestral resource and tools for short tandem repeat analysis in the AOURP researcher workbench
在 AOURP 研究人员工作台中创建先进的多祖先资源和工具,用于短串联重复分析
- 批准号:
10798717 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Deciphering unintended large gene modifications in gene editing for sickle cell disease
破译镰状细胞病基因编辑中意外的大基因修饰
- 批准号:
10720685 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别: