Novel video-based approaches for detection of autism risk in the first year of life
基于视频的新颖方法可检测生命第一年的自闭症风险
基本信息
- 批准号:10434011
- 负责人:
- 金额:$ 71.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-09 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:4 year oldAffectAgeAge-MonthsAlgorithmsArchivesArtificial IntelligenceAutism DiagnosisBehaviorBehavioralBrainChildChildhoodCodeCommunitiesCompetenceComputing MethodologiesDataData SetDetectionDevelopmentDiagnosisDiagnosticDiseaseEarly DiagnosisEarly InterventionEarly identificationEarly treatmentEvaluationEventFacial ExpressionFamily history ofFoundationsFundingFutureGeneral PopulationGoalsHandHealth Services AccessibilityHourImprove AccessInfantInternetInterventionLearningLifeLifestyle-related conditionMachine LearningMeasuresMethodsOnline SystemsParentsPerformancePropertyPsychometricsPublic Health Applications ResearchResourcesRiskSamplingScreening procedureSecureSensitivity and SpecificitySymptomsSystemTechniquesTestingTimeTrainingUnited StatesUnited States National Institutes of Healthautism spectrum disorderautistic childrenautomated algorithmbaseclinically relevantcomputer programcostdeep learning modeldetection methoddisabilitydisease classificationdisorder riskexperiencefamily burdengazehigh riskimprovedinfancyinnovationinnovative technologiesinstrumentmachine learning algorithmmachine learning methodmobile applicationmobile computingnew technologynovelpreventrecruitresponsescreeningvalidation studiesvocalization
项目摘要
Signs of autism spectrum disorder (ASD) emerge in the first year of life in many children, but diagnosis is
typically made much later, at an average age of 4 years in the United States. Early intervention is highly
effective for young children with ASD, but is typically reserved for children with a formal diagnosis, making
accurate identification as early as possible imperative. A screening tool that could identify ASD risk during
infancy offers the opportunity for intervention before the full set of symptoms is present. In this application, we
propose two novel video-based methods of detecting ASD in the first year of life. First, we will validate a
recently developed instrument, the Video-referenced Infant Rating System for Autism (VIRSA), in a general
community sample of infants. The VIRSA is a brief web-based instrument that utilizes video depictions rather
than written descriptions of behavior to detect signs of ASD. It leverages thousands of hours of already
collected and hand-coded video obtained through previous NIH funding. Videos demonstrating a continuum of
behaviors and developmental competence are presented to parents, who identify the ones most representative
of their child. Through previous funding, we have established that the VIRSA has good psychometric properties
when used by parents with previous experience of ASD (i.e., have an older affected child) and demonstrated
that it is able to distinguish infants developing ASD in the first year of life. In Aim 1, we will examine the
measure’s use by parents who are naïve to ASD, with no family history of the disorder. In Aim 2, we propose
another innovative method of utilizing video for ASD detection. Machine learning is an application of artificial
intelligence in which computer programs “learn” and adjust themselves in response to training data to which
they are exposed, improving performance and generalization to novel data without being explicitly
programmed. We propose to use the videos from the VIRSA, previously demonstrated in our initial validation
study to be sensitive to early signs of ASD, as training inputs to develop machine-learning algorithms for
automatic detection of ASD-related behaviors. The huge video archive available for this project, with hand-
coded time-stamped behavioral tags, is a highly valuable resource for machine learning. Aim 2 will lay the
foundation for future attempts to develop video-based mobile applications for ASD recognition, which require
validated classifiers that can recognize behavioral events central to early detection of ASD. The ultimate goal
of the two aims of the proposed project is to develop low-cost, low-burden measures that capitalize on new
technologies, including mobile platforms, video, and machine learning methods, to detect ASD risk in infancy.
Such measures would have significant public health applications, including screening large community-based
samples and longitudinally tracking development in pediatric settings to identify children requiring evaluation.
Identification of ASD in infancy would afford treatment at an optimal age, when the brain is most malleable,
which could lessen disability and possibly prevent the emergence of later-appearing symptoms.
许多儿童生命的第一年出现了自闭症谱系障碍(ASD)的迹象,但诊断是
通常,在美国平均4岁的平均年龄。早期干预高度
对ASD的幼儿有效,但通常适用于有正式诊断的儿童
尽早准确识别。筛选工具,可以识别ASD风险
婴儿期在存在全套症状之前提供了干预的机会。在此应用程序中,我们
提出两种基于视频的新型方法在生命的第一年中检测ASD。首先,我们将验证
最近开发的仪器是自闭症的视频引用的婴儿评级系统(VIRSA)
社区婴儿样本。 VIRSA是一种基于网络的简短仪器,使用视频描述而不是
比对ASD的迹象的行为描述相比。它利用数千小时已经
通过以前的NIH资金收集和手工编码的视频。视频展示了连续的
行为和发展能力呈现给父母,他们确定了最具代表性的人
他们的孩子。通过以前的资金,我们已经确定VIRSA具有良好的心理测量特性
当父母使用以前的ASD经验(即有一个年龄较大的孩子)并证明时
它能够区分婴儿在生命的第一年发展ASD。在AIM 1中,我们将检查
对ASD幼稚的父母的使用,没有这种疾病的家族史。在AIM 2中,我们建议
使用视频进行ASD检测的另一种创新方法。机器学习是人造的应用
计算机程序“学习”并根据培训数据进行调整的情报
它们暴露了,改善了对新数据的性能和概括,而无需明确的数据
程序。我们建议使用VIRSA的视频,以前在我们的初始验证中证明
研究对ASD的早期迹象敏感,作为训练输入以开发机器学习算法
自动检测与ASD相关的行为。该项目可用于此项目的巨大视频档案 -
编码的时标行为标签,是机器学习的高度宝贵资源。 AIM 2将放置
未来尝试开发基于视频的ASD识别的移动应用程序的基础,这需要
经过验证的分类器可以识别ASD早期检测中心的行为事件。最终目标
拟议项目的两个目标中,有两个低成本,低负荷的措施利用了新的
技术,包括移动平台,视频和机器学习方法,以检测婴儿期ASD风险。
此类措施将具有重要的公共卫生应用程序,包括筛查大型社区
样本和纵向跟踪小儿环境中的发展,以识别需要评估的儿童。
当大脑最具延展性时,婴儿期对ASD的识别将在最佳的年龄中得到治疗,
这可以减轻残疾,并可能阻止以后出现的症状的出现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sally Ozonoff其他文献
Sally Ozonoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sally Ozonoff', 18)}}的其他基金
Addressing disparities in ASD diagnosis using a direct-to-home telemedicine tool: Evaluation of diagnostic accuracy, psychometric properties, and family engagement
使用直接到家远程医疗工具解决 ASD 诊断中的差异:评估诊断准确性、心理测量特性和家庭参与度
- 批准号:
10277413 - 财政年份:2021
- 资助金额:
$ 71.75万 - 项目类别:
Addressing disparities in ASD diagnosis using a direct-to-home telemedicine tool: Evaluation of diagnostic accuracy, psychometric properties, and family engagement
使用直接到家远程医疗工具解决 ASD 诊断中的差异:评估诊断准确性、心理测量特性和家庭参与度
- 批准号:
10461849 - 财政年份:2021
- 资助金额:
$ 71.75万 - 项目类别:
Addressing disparities in ASD diagnosis using a direct-to-home telemedicine tool: Evaluation of diagnostic accuracy, psychometric properties, and family engagement
使用直接到家远程医疗工具解决 ASD 诊断中的差异:评估诊断准确性、心理测量特性和家庭参与度
- 批准号:
10667589 - 财政年份:2021
- 资助金额:
$ 71.75万 - 项目类别:
Novel video-based approaches for detection of autism risk in the first year of life
基于视频的新颖方法可检测生命第一年的自闭症风险
- 批准号:
10794112 - 财政年份:2019
- 资助金额:
$ 71.75万 - 项目类别:
Novel video-based approaches for detection of autism risk in the first year of life
基于视频的新颖方法可检测生命第一年的自闭症风险
- 批准号:
10011854 - 财政年份:2019
- 资助金额:
$ 71.75万 - 项目类别:
Novel video-based approaches for detection of autism risk in the first year of life
基于视频的新颖方法可检测生命第一年的自闭症风险
- 批准号:
10656438 - 财政年份:2019
- 资助金额:
$ 71.75万 - 项目类别:
Novel video-based approaches for detection of autism risk in the first year of life
基于视频的新颖方法可检测生命第一年的自闭症风险
- 批准号:
10201443 - 财政年份:2019
- 资助金额:
$ 71.75万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
恒星模型中氧元素丰度的变化对大样本F、G、K矮星年龄测定的影响
- 批准号:12303035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
中国东部地区大气颗粒物的年龄分布特征及其影响因素的模拟研究
- 批准号:42305193
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
- 批准号:
10637981 - 财政年份:2023
- 资助金额:
$ 71.75万 - 项目类别:
Prenatal Longitudinal Metabolomics Profiling for Early Childhood Growth Trajectories and Obesity Risk in a US Biracial Birth Cohort
美国混血出生队列中儿童早期生长轨迹和肥胖风险的产前纵向代谢组学分析
- 批准号:
10580910 - 财政年份:2023
- 资助金额:
$ 71.75万 - 项目类别:
Evaluation of Patient Factors and Sample Pre-Analytics on Predictive Multiplex Immunohistochemical Assays in Immuno-Oncology Patients
免疫肿瘤患者预测多重免疫组织化学分析的患者因素和样品预分析的评估
- 批准号:
10907058 - 财政年份:2023
- 资助金额:
$ 71.75万 - 项目类别:
Cultural Pride Reinforcement for Early School Readiness: Pilot Randomized Controlled Trial of a Clinic-Based Intervention for Young African American Children
强化文化自豪感,为早期入学做好准备:对非裔美国幼儿进行临床干预的随机对照试验
- 批准号:
10664763 - 财政年份:2023
- 资助金额:
$ 71.75万 - 项目类别: