Water and chloride movement in neurons during seizure activity
癫痫发作期间神经元中的水和氯离子运动
基本信息
- 批准号:10432125
- 负责人:
- 金额:$ 42.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AgeAnionsBlindnessBlood flowBrainBrain EdemaBrain InjuriesCationsCell DeathCellsCerebral PalsyChildhood InjuryChloridesCognitiveDataDevelopmentDrug TargetingEdemaEpilepsyEventFoundationsFutureGoalsHumanHypoxiaImaging TechniquesIn VitroIncidenceIonsKnowledgeLeadLinkLive BirthMeasuresMediatingMetabolicMissionMorbidity - disease rateMovementNervous System TraumaNeuronsNewborn InfantOsmolar ConcentrationOutcomeOxygenPathologicPathway interactionsPharmaceutical PreparationsPharmacological TreatmentPharmacologyPositioning AttributePublic HealthRegulationReproducibilityResearchResistanceRoleSeizuresStrokeSwellingTestingTransgenic MiceTraumaTraumatic Brain InjuryUnited States National Institutes of HealthWaterWater Movementsbasecell typecytotoxicdeafnessdeep learning algorithmdeprivationdisabilitydrug developmentexcitotoxicityextracellularfluorophoregenetic manipulationimprovedin vivoinnovationmultiphoton imagingneonatal brainneonatal hypoxic-ischemic brain injuryneonatal periodneonatal seizureneonateneuron lossnovelpreventsymporterwater channelwater flow
项目摘要
PROJECT SUMMARY/ABSTRACT
There are no pharmacological treatments for cytotoxic edema, which is a common consequence of multiple
brain insults, including hypoxic-ischemic and traumatic brain injury, stroke, metabolic derangements, and
seizures. Hypoxic-ischemic encephalopathy (HIE), with an incidence of 1.5 of every 1,000 live births, is a type of
brain damage in newborns caused by oxygen deprivation and limited blood flow. HIE is associated with seizures,
and both correlate with long-term morbidity, including cerebral palsy, cognitive delay, epilepsy, vision loss, and
deafness. HIE and neonatal seizures result in cytotoxic edema, which is characterized by the accumulation of
water, chloride (Cl-), and other ions. The mechanisms of water movement that make neurons swell during the
neonatal period are unknown. There is a critical need to determine how water moves into neurons that result
and perpetuate neuronal swelling during the neonatal period, as there are no direct treatments for cytotoxic
edema at this age. Knowing the pathways of water movement in neurons is the first step to develop innovative
ways to treat cytotoxic edema, which will prevent neuronal cell death and improve the treatment of neonatal
seizures. Neurons do not have water channels to allow the movement of water. Multiple pathways have been
described in different cell types, but it is unknown which ones participate during the neonatal period. Our long-
term goal is to identify the mechanisms of neuronal swelling in the developing brain and how this swelling results
in neuronal death. Our central hypothesis for this proposal is that specific cation-chloride cotransporters (CCCs)
move water, along with Cl-, in and out of neurons during cytotoxic edema in the neonatal period. This hypothesis
is based on our data demonstrating the linked movement of water and Cl- in neurons during cytotoxic edema.
We will test our hypothesis through two specific aims. Aim 1 will determine the pathway of water movement
into neurons during swelling in the neonatal period. Aim 2 will determine the paths of water movement out of
cortical neurons that prevent progressive swelling during the neonatal period. We will use multiphoton imaging
techniques to measure changes in neuronal size and their Cl- concentration during swelling in different
transgenic mouse lines expressing both Cl- sensitive and insensitive fluorophores, in vitro, and in vivo, while
altering the CCC function either pharmacologically or through genetic manipulation. Also, we will use a novel
deep learning algorithm to analyze the changes in neuronal size during swelling. Our studies will uncover
fundamental mechanisms on how neurons swell and what mechanisms prevent progressive swelling during
early brain development. Our results will have a broad impact as they will open new research avenues on
neuronal volume regulation in the newborn and will guide the development of drugs targeting cytotoxic edema,
which are currently lacking. Moreover, our results will apply to other severe brain injuries in children that are
associated with cytotoxic edema and elevated neuronal Cl- concentration, including trauma, and stroke.
项目概要/摘要
细胞毒性水肿没有药物治疗方法,细胞毒性水肿是多种疾病的常见后果
脑损伤,包括缺氧缺血性和创伤性脑损伤、中风、代谢紊乱和
癫痫发作。缺氧缺血性脑病 (HIE) 的发病率为每 1,000 名活产儿中就有 1.5 人患有缺氧缺血性脑病 (HIE)。
缺氧和血流受限导致新生儿脑损伤。 HIE 与癫痫发作有关,
两者都与长期发病相关,包括脑瘫、认知迟缓、癫痫、视力丧失和
耳聋。 HIE 和新生儿惊厥会导致细胞毒性水肿,其特征是细胞毒性水肿
水、氯离子 (Cl-) 和其他离子。水运动使神经元在运动过程中肿胀的机制
新生儿期不详。迫切需要确定水如何进入神经元,从而产生
并在新生儿期使神经元肿胀永久存在,因为没有细胞毒性的直接治疗方法
这个年纪就出现水肿。了解神经元中水运动的途径是开发创新的第一步
治疗细胞毒性水肿的方法,这将防止神经元细胞死亡并改善新生儿的治疗
癫痫发作。神经元没有允许水运动的水通道。已经有多种途径
在不同的细胞类型中都有描述,但尚不清楚哪些细胞在新生儿期参与。我们的长期
长期目标是确定发育中大脑中神经元肿胀的机制以及这种肿胀是如何产生的
在神经元死亡中。我们对该提案的中心假设是特定的阳离子-氯化物协同转运蛋白(CCC)
在新生儿期细胞毒性水肿期间,将水与 Cl- 一起移入和移出神经元。这个假设
基于我们的数据,证明了细胞毒性水肿过程中神经元中水和 Cl- 的相关运动。
我们将通过两个具体目标来检验我们的假设。目标 1 将确定水运动的路径
在新生儿期肿胀期间进入神经元。目标 2 将确定水流出的路径
防止新生儿期进行性肿胀的皮质神经元。我们将使用多光子成像
测量不同肿胀过程中神经元大小及其 Cl- 浓度变化的技术
在体外和体内表达 Cl 敏感和不敏感荧光团的转基因小鼠系,同时
通过药理学或基因操作改变 CCC 功能。另外,我们将使用小说
深度学习算法来分析肿胀过程中神经元大小的变化。我们的研究将揭示
神经元如何肿胀的基本机制以及防止进行性肿胀的机制
早期大脑发育。我们的研究结果将产生广泛的影响,因为它们将为以下领域开辟新的研究途径
新生儿的神经元体积调节,并将指导针对细胞毒性水肿的药物的开发,
目前还缺乏哪些。此外,我们的结果将适用于儿童的其他严重脑损伤,
与细胞毒性水肿和神经元 Cl- 浓度升高有关,包括创伤和中风。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph C. Glykys其他文献
Joseph C. Glykys的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph C. Glykys', 18)}}的其他基金
Water and chloride movement in neurons during seizure activity
癫痫发作期间神经元中的水和氯离子运动
- 批准号:
10118759 - 财政年份:2020
- 资助金额:
$ 42.63万 - 项目类别:
Water and chloride movement in neurons during seizure activity
癫痫发作期间神经元中的水和氯离子运动
- 批准号:
10643936 - 财政年份:2020
- 资助金额:
$ 42.63万 - 项目类别:
Water and chloride movement in neurons during seizure activity
癫痫发作期间神经元中的水和氯离子运动
- 批准号:
10266838 - 财政年份:2020
- 资助金额:
$ 42.63万 - 项目类别:
Osmotic therapy for seizures in pediatric traumatic brain injury
渗透疗法治疗小儿创伤性脑损伤癫痫发作
- 批准号:
9132374 - 财政年份:2015
- 资助金额:
$ 42.63万 - 项目类别:
相似国自然基金
基于胺/硫醇一步溶液法制备多阴离子V-VI-VII硫卤化物薄膜太阳能电池
- 批准号:22309158
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性氢键供体与阴离子结合催化乙烯基醚的立体选择性阳离子聚合
- 批准号:22301279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于阴离子调控价态转移的光诱导铁催化聚烯烃的C(sp3)−H氧化氮化反应
- 批准号:22371223
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
长链阴离子捕收剂对胺类捕收剂反浮选赤铁矿的优化及其泡沫调控机制
- 批准号:52364029
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
阴离子调控的Pd(0)催化烯烃亲核钯化反应研究
- 批准号:22301210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploring Crystallin Deamidation as a Causative Agent of Cataracts
探索晶状体蛋白脱酰胺作用作为白内障的致病因素
- 批准号:
10538422 - 财政年份:2022
- 资助金额:
$ 42.63万 - 项目类别:
Exploring Crystallin Deamidation as a Causative Agent of Cataracts
探索晶状体蛋白脱酰胺作用作为白内障的致病因素
- 批准号:
10670099 - 财政年份:2022
- 资助金额:
$ 42.63万 - 项目类别:
Water and chloride movement in neurons during seizure activity
癫痫发作期间神经元中的水和氯离子运动
- 批准号:
10118759 - 财政年份:2020
- 资助金额:
$ 42.63万 - 项目类别: