Engineering fluid dynamics of cryo-plunging for improved vitrification
用于改善玻璃化的低温浸入的工程流体动力学
基本信息
- 批准号:10430822
- 负责人:
- 金额:$ 22.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiologicalBiological ProcessCell CommunicationCell physiologyCellsCellular StructuresCellular biologyComputer softwareConvectionCoupledCryo-electron tomographyCryoelectron MicroscopyCustomDiffuseEngineeringFeedbackGeometryGoalsIceImageIn SituInvestigationKnowledgeLiquid substanceMethodsModelingMolecularMolecular StructureMonitorMotionMovementPerformancePositioning AttributePreparationProceduresProcessProtocols documentationReproducibilityResolutionSamplingSeriesSpeedSystemTechniquesTemperatureTestingThickThinnessTimeWaterWorkbasecellular imagingcomputerized toolscryogenicscrystallinitydesignexperimental studyimaging modalityimprovedinstrumentmillisecondnanoscaleopen sourcesensorsimulationsolid statestructural biologytemporal measurementtheoriestime intervaltomography
项目摘要
PROJECT SUMMARY ABSTRACT
The long-term goal of this project is to improve cryo-vitrification sample preparation methods for
cryo-electron microscopy (cryo-EM) and tomography (cryo-ET) in terms of their reproducibility
and sample thickness limitations. Cryo-EM is a promising method for observing sub-cellular
assemblies in situ with molecular resolution. However, cryo-EM is hampered by the
irreproducibility and sample thickness limitations imposed by the cryo-vitrification process.
Currently, vitrification is typically achieved by plunging the sample into a cryogenic fluid. This
process of cryo-plunging remains notoriously irreproducible even in structural biology
applications: many cryo-plunging attempts are typically required to get high-quality amorphous
ice. In cell biology applications, the problem is exacerbated: the low thermal diffusivity of cells
puts stringent requirements on the cooling rate in the vitrification process, limiting the thickness
of the sample to the micron scale (<~10 μm), which restricts the application of this technique to
sparsely seeded cells. The cryo-vitrification process will continue to limit the scope and throughput
of cryo-EM until we rigorously understand the fluid dynamics of the sample-cryogen interaction
during cryo-plunging. Once this process is understood, we can engineer it to achieve fast and
reproducible cooling of thicker samples. Optimizing the cryo-vitrification process will address
several critical technical barriers, including: (i) enabling high-throughput sample processing by
increasing the reproducibility of sample preparation, (ii) expanding the scope of cryo-ET by
increasing the thickness of samples eligible for cryo-plunging, and even (iii) achieving time-
resolved nanoscale imaging of biological processes by cooling samples at precise time intervals
after stimulation. The PIs form a collaborative team that is uniquely positioned to address these
technical barriers by using a combination of computational and experimental methods to
understand cryogenic flow and extend the capabilities of cryo-plunging by (1) developing
computational tools to simulate cryo-plunging, (2) systematically exploring the design space and
making testable predictions of system performance, (3) developing and validating a time-resolved
temperature monitoring system, and using it to (4) test theoretical predictions using biological
samples. Upon completion, we will have performed theory-driven experiments evaluating the
most promising cryo-plunging protocols for biological samples. The new protocols will increase
the reproducibility of cryo-plunging and extend this technique to thicker samples, which is
desirable for investigation of biologically relevant cellular assemblies and cell-cell communication.
项目概要摘要
该项目的长期目标是改进冷冻玻璃化样品制备方法
冷冻电子显微镜 (cryo-EM) 和断层扫描 (cryo-ET) 的再现性
冷冻电镜是一种很有前景的观察亚细胞的方法。
然而,冷冻电镜受到了分子分辨率的阻碍。
冷冻玻璃化过程施加的不可还原性和样品厚度限制。
目前,玻璃化通常是通过将样品浸入低温流体中来实现的。
即使在结构生物学中,低温浸入的过程仍然是众所周知的不可重复的
应用:通常需要进行许多低温浸入尝试才能获得高质量的非晶态
在细胞生物学应用中,这个问题更加严重:细胞的低热扩散率。
对玻璃化过程中的冷却速度提出了严格的要求,限制了厚度
样品的尺寸达到微米级(<~10 μm),这限制了该技术的应用
稀疏接种的细胞将继续限制范围和通量。
直到我们严格了解样品与冷冻剂相互作用的流体动力学
一旦了解了这个过程,我们就可以对其进行设计以实现快速且准确的目标。
优化冷冻玻璃化过程将解决较厚样品的可重复冷却问题。
几个关键的技术障碍,包括:(i) 通过以下方式实现高通量样品处理:
提高样品制备的可重复性,(ii) 通过以下方式扩大冷冻电子断层扫描的范围:
增加适合冷冻浸入的样品的厚度,甚至(iii)实现时间-
通过以精确的时间间隔冷却样品来解决生物过程的纳米级成像
经过刺激后,PI 组建了一个协作团队,该团队具有独特的优势来解决这些问题。
通过使用计算和实验方法相结合的技术障碍
通过 (1) 开发了解低温流动并扩展低温浸入的能力
模拟低温插入的计算工具,(2) 系统地探索设计空间和
对系统性能进行可测试的预测,(3) 开发和验证时间分辨的
温度监测系统,并用它来(4)使用生物检验理论预测
完成后,我们将进行理论驱动的实验来评估
最有前途的生物样品冷冻方案将会增加。
冷冻插入的再现性并将该技术扩展到更厚的样品,即
对于研究生物学相关的细胞组装和细胞间通讯是理想的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Prigozhin其他文献
Maxim Prigozhin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Prigozhin', 18)}}的其他基金
Engineering fluid dynamics of cryo-plunging for improved vitrification
用于改善玻璃化的低温浸入的工程流体动力学
- 批准号:
10707442 - 财政年份:2022
- 资助金额:
$ 22.55万 - 项目类别:
HPF-X: High-pressure freezing with buffer exchange
HPF-X:带有缓冲液交换的高压冷冻
- 批准号:
10704139 - 财政年份:2022
- 资助金额:
$ 22.55万 - 项目类别:
相似国自然基金
流动乳品体系中嗜热混合菌生物被膜的形成过程及机制研究
- 批准号:32302027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物质/含氮废弃物可控热裂解-定向催化重整过程调控与多还原组分分解炉脱硝机制研究
- 批准号:52372024
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
玉米秸秆生物炭投加对促进低浓度废水厌氧消化的过程与机理研究
- 批准号:52300035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
混合营养型原生生物代谢可塑性对气候变暖和水体富营养化的响应过程及机制
- 批准号:32371625
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
土壤环境中四溴双酚A及其衍生物的微生物转化过程及机制研究
- 批准号:42377386
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
- 批准号:
10749134 - 财政年份:2024
- 资助金额:
$ 22.55万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 22.55万 - 项目类别:
The Role of Ethnic Racial Discrimination on the Development of Anxious Hypervigilance in Latina Youth
民族种族歧视对拉丁裔青少年焦虑过度警觉的影响
- 批准号:
10752122 - 财政年份:2024
- 资助金额:
$ 22.55万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 22.55万 - 项目类别:
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 22.55万 - 项目类别: