Epigenetic Regulation by FoxO1 in Pancreatic Beta Cells
FoxO1 在胰腺 Beta 细胞中的表观遗传调控
基本信息
- 批准号:10435937
- 负责人:
- 金额:$ 7.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAdenovirusesAffectAgingAlpha CellArginineB Cell ProliferationB-Cell DevelopmentBeta CellBinding SitesCandidate Disease GeneCell NucleusCell physiologyCellsCharacteristicsCoupledCytoplasmDNA MethylationDataDevelopmentDiabetes MellitusEndocrineEnhancersEpigenetic ProcessFOXO1A geneFailureFemaleFunctional disorderGC geneGene ExpressionGenesGenetic EpistasisGenetic TranscriptionGlucoseGlucose ClampGlucose tolerance testGoalsHNF4A geneHealthHi-CHigh Fat DietHistonesHumanImmunohistochemistryInsulinIntercistronic RegionIslet CellKnockout MiceKnowledgeLinkMaintenanceMapsMature B-LymphocyteMetabolicMetabolic DiseasesModificationMultiparityMusNatural regenerationNon-Insulin-Dependent Diabetes MellitusPathogenesisPatternPlayProcessProteinsRNARegulationRegulatory ElementReportingRepressionResearchResearch PersonnelResearch TrainingRoleStressStructure of beta Cell of isletTherapeuticTranscriptional Activationcareercareer developmentcell dedifferentiationcell typechromatin remodelingchromosome conformation capturediabeticepigenetic regulationepigenomeepigenomicsfunctional genomicsgene repressiongenetic signaturegenome sequencinggenome-widehistone modificationimprovedin vivoinsulin secretioninterestisletmaleoverexpressionpandemic diseaseprogenitorpromoterresponsestressortranscription factortranscriptome sequencing
项目摘要
Project Summary
Over the last 30 years, diabetes has become a pandemic. Type 2 diabetes is the most common form of
diabetes, and pancreatic β cell failure is pivotal in the pathogenesis of this metabolic disorder. Restoring β cell
function has taken center stage in developing therapeutics to “cure” diabetes, through inducing β cell
proliferation, re-differentiation, and regeneration. However, the quality and quantity of “β cell” obtained are less
than ideal. One critical aspect to facilitate these processes to generating “perfect” β cell is to understand the
epigenetic changes involved in β cell formation and maintenance. More and more evidence suggests that
histone modification and chromatin remodeling play critical roles in β cell development, cell fate commitment,
proliferation, and regeneration. Key β cell transcription factor FoxO1 is required to maintain β cell maturity.
Ablation of FoxO1 in β cells leads to β cell dedifferentiation, a process where mature β cells lose their identity
and ability to produce and secret insulin. In healthy β cells, FoxO1 is inactive and resides in the cytoplasm. In
response to stressors, such as aging and multiparity, FoxO1 translocates into the nucleus, and elicits
transcriptional networks to defend β cell health. In advanced type 2 diabetes, FoxO1 disappears from β cells
as a result of increased degradation, leading to metabolic inflexibility and paving the way for dedifferentiation.
However, whether the protective role of FoxO1 against β cell failure involves maintaining the epigenomic
landscape has not been studied. The proposed studies will fill the gap of knowledge between FoxO1,
epigenetics, functional genomics, and diabetes. The PI presented preliminary data to establish a role of FoxO1
in epigenetics with RNAseq and histone modification ChIPseq (i.e., H3K4me3, H3K27me3, and H3K27ac)
using FAC sorted β cells in β cell-specific FoxO1 KO mice. The PI will continue to build the integrative
regulatory map of FoxO1 in pancreatic β-cell with Hi-C, DNA methylation, and FoxO1 ChIPseq. H3K27ac motif
analysis and RNA profiling suggest an imbalanced regulation between FoxO1 and Hnf4α, therefore, the PI will
perform glucose clamps, glucose tolerance test, glucose- and arginine-stimulated insulin secretion in isolated
islets, and RNAseq using β cell-specific FoxO1 and Hnf4α double KO mice to determine the epistasis of
FoxO1 and Hnf4α. The PI will also functionally characterize FoxO1 targets to identify genes of therapeutic
interest. The tailored research training and career development activities will assist the PI to achieve her career
goals: becoming an independent academic investigator and advancing the field of diabetes research.
项目概要
过去 30 年来,糖尿病已成为一种流行病,2 型糖尿病是最常见的形式。
糖尿病和胰腺 β 细胞衰竭是这种代谢紊乱的发病机制的关键。
通过诱导 β 细胞,功能已成为开发“治愈”糖尿病疗法的中心舞台
但获得的“β细胞”的质量和数量较少。
促进这些过程产生“完美”β细胞的一个关键方面是了解
越来越多的证据表明,表观遗传变化涉及β细胞的形成和维持。
组蛋白修饰和染色质重塑在 β 细胞发育、细胞命运决定、
增殖和再生需要关键的β细胞转录因子FoxO1来维持β细胞的成熟。
β 细胞中 FoxO1 的消除会导致 β 细胞去分化,这是成熟 β 细胞失去其身份的过程
以及产生和分泌胰岛素的能力 在健康的 β 细胞中,FoxO1 不活跃并驻留在细胞质中。
为了应对应激源,例如衰老和多产,FoxO1 易位到细胞核中,并引发
在晚期 2 型糖尿病中,FoxO1 从 β 细胞中消失。
由于降解加剧,导致代谢不灵活并为去分化铺平道路。
然而,FoxO1 对 β 细胞衰竭的保护作用是否涉及维持表观基因组
景观尚未被研究。拟议的研究将填补 FoxO1 之间的知识空白,
表观遗传学、功能基因组学和糖尿病。 PI 提供了初步数据来确定 FoxO1 的作用。
表观遗传学中使用 RNAseq 和组蛋白修饰 ChIPseq(即 H3K4me3、H3K27me3 和 H3K27ac)
在 β 细胞特异性 FoxO1 KO 小鼠中使用 FAC 分选的 β 细胞 PI 将继续构建整合的系统。
胰腺 β 细胞中 FoxO1 的调控图谱,包含 Hi-C、DNA 甲基化和 FoxO1 ChIPseq H3K27ac 基序。
分析和 RNA 分析表明 FoxO1 和 Hnf4α 之间的调节不平衡,因此,PI 将
进行葡萄糖钳夹、葡萄糖耐量试验、葡萄糖和精氨酸刺激的胰岛素分泌分离
胰岛和RNAseq使用β细胞特异性FoxO1和Hnf4α双KO小鼠来确定上位性
FoxO1 和 Hnf4α 还将对 FoxO1 靶标进行功能表征,以识别治疗基因。
量身定制的研究培训和职业发展活动将帮助 PI 实现其职业生涯。
目标:成为一名独立的学术研究者并推进糖尿病研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taiyi Diana Kuo其他文献
Taiyi Diana Kuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taiyi Diana Kuo', 18)}}的其他基金
Decipher the Function of C2cd4a in Metabolism
解读 C2cd4a 在代谢中的功能
- 批准号:
10594862 - 财政年份:2023
- 资助金额:
$ 7.68万 - 项目类别:
Epigenetic Regulation by FoxO1 in Pancreatic Beta Cells
FoxO1 在胰腺 Beta 细胞中的表观遗传调控
- 批准号:
10179361 - 财政年份:2018
- 资助金额:
$ 7.68万 - 项目类别:
Epigenetic Regulation by FoxO1 in Pancreatic Beta Cells
FoxO1 在胰腺 Beta 细胞中的表观遗传调控
- 批准号:
10619310 - 财政年份:2018
- 资助金额:
$ 7.68万 - 项目类别:
Epigenetic Regulation by FoxO1 in Pancreatic Beta Cells
FoxO1 在胰腺 Beta 细胞中的表观遗传调控
- 批准号:
9599028 - 财政年份:2018
- 资助金额:
$ 7.68万 - 项目类别:
相似国自然基金
肠道菌群对溶瘤腺病毒免疫治疗的影响与机制及综合治疗策略的研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
DENND2D的诱导表达对非小细胞肺癌细胞恶性表型影响及其作用机制研究
- 批准号:81802284
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
血清4型禽腺病毒3'端135-bp自然缺失影响病毒致病性的研究
- 批准号:31702268
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
纤毛杆影响嵌合型腺病毒感染T淋巴细胞效率的机制研究
- 批准号:31400149
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
cGAS-STING Pathway Targeting Replicative Adenoviruses with CD46 Tropism and AFP Promoter Conditional Replication Restriction for the Treatment of Hepatocellular Carcinoma
cGAS-STING 通路靶向具有 CD46 趋向性和 AFP 启动子的复制腺病毒条件性复制限制用于治疗肝细胞癌
- 批准号:
10436626 - 财政年份:2021
- 资助金额:
$ 7.68万 - 项目类别:
A phase I trial of AdKCNH2-G628S gene therapy for post-op atrial fibrillation
AdKCNH2-G628S 基因治疗术后房颤的 I 期试验
- 批准号:
10513931 - 财政年份:2021
- 资助金额:
$ 7.68万 - 项目类别:
A phase I trial of AdKCNH2-G628S gene therapy for post-op atrial fibrillation
AdKCNH2-G628S 基因治疗术后房颤的 I 期试验
- 批准号:
10276899 - 财政年份:2021
- 资助金额:
$ 7.68万 - 项目类别:
A phase I trial of AdKCNH2-G628S gene therapy for post-op atrial fibrillation
AdKCNH2-G628S 基因治疗术后房颤的 I 期试验
- 批准号:
10703247 - 财政年份:2021
- 资助金额:
$ 7.68万 - 项目类别:
Development of a first-in-class mEGFR dimerization inhibitor
开发一流的 mEGFR 二聚化抑制剂
- 批准号:
10435117 - 财政年份:2020
- 资助金额:
$ 7.68万 - 项目类别: