Mass Multivariate Derivation and Validation of AUD Biotypes using Developmental Imaging and Genomic Approaches
使用发育成像和基因组方法对 AUD 生物型进行大规模多变量推导和验证
基本信息
- 批准号:10429020
- 负责人:
- 金额:$ 17.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-20 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdolescentAdoptedAdultAgeAlcohol abuseAlcohol consumptionAmericanArchitectureBase of the BrainBehaviorBehavioralBehavioral GeneticsBioinformaticsBiologicalBiological AssayBiologyBrainBrain imagingChildChildhoodCognitionCollaborationsDataData AnalysesData SetDerivation procedureDevelopmentDiseaseEquationEtiologyGenesGeneticGenomic approachGenomicsGoalsGrantHeavy DrinkingHeterogeneityHumanImpulsivityIndividualLeadLifeLongevityMachine LearningMagnetic Resonance ImagingMediatingMental DepressionMental disordersMentorsMeta-AnalysisMethodsMinorityModalityModelingMolecularMolecular GeneticsNaltrexoneNeurosciencesOpioid ReceptorOutcomePDE4BPathway interactionsPatientsPharmaceutical PreparationsPharmacological TreatmentPharmacologyPhenotypePrevalencePreventionPsychopathologyRelapseResearchResearch Scientist AwardRiskRisk FactorsRisk-TakingSchizophreniaScienceSilicon DioxideSymptomsTrainingTranslatingTreatment EffectivenessValidationVariantaddictionalcohol availabilityalcohol involvementalcohol riskalcohol use disorderbasebehavioral phenotypingbiobankbiological heterogeneitybiopsychosocialcognitive developmentconnectomecravingdrinking behaviordrug developmentdrug repurposingexecutive functionexperiencegenetic architecturegenome wide association studygenome-widegenomic datagenomic signaturehuman old age (65+)imaging approachimprovedin silicoindividualized medicineinsightlarge scale datalongitudinal analysismachine learning algorithmmultiple omicsnegative affectneurobehavioralneurogeneticsneuroimagingnovelperson centeredpersonalized medicineprecision drugspsychologicpsychosocialskillsstatisticssubstance usesupervised learningtherapy developmenttraining projecttrait
项目摘要
PROJECT SUMMARY/ABSTRACT
In stark contrast to the widespread prevalence and devastating outcomes associated with alcohol use disorder,
currently available treatment options are only moderately effective. The large heterogeneity in AUD presentations
may obfuscate etiology and individualized treatment options. In this 5-year K01 mentored research scientist
award application, I propose to characterize the behavioral, molecular, and genetic correlates of AUD biotypes
(subtypes determined by biology) across the lifespan. To this end, I will apply semi-supervised machine learning
algorithms to structural brain imaging data from the largest available AUD and alcohol use datasets from
childhood to old age (total n=61,428). I will examine the stability of these biotypes across the lifespan, including
among substance-naïve children and adults with heavy alcohol use, as well as their correlates with
neurobehavioral stage-based constructs of addiction (i.e., impulsivity, negative affect, cognition) and with alcohol
involvement trajectories. I will then conduct a genome-wide association study of AUD biotypes to disarticulate
their genetic architecture, genetic correlates, and potential molecular pathways that may be leveraged for drug
repositioning. This grant develops my skillsets in semi-supervised machine learning, AUD heterogeneous
presentations, multivariate genome-wide methods, and multi-omic analytic approaches. These skill sets will
serve as a backdrop for a planned R01 submission that will leverage my background in large-scale data analysis
to translate across biological modalities in substance use research.
项目摘要/摘要
与与酒精使用障碍有关的宽度流行和毁灭性结果形成鲜明对比的是
当前可用的治疗方案仅适度有效。 AUD演示文稿中的较大异质性
可能会混淆病因和个性化的治疗选择。在这个五年的K01中,指导了研究科学家
奖励应用,我建议表征AUD生物型的行为,分子和遗传相关性
(由生物学确定的亚型)在整个生命周期中。为此,我将应用半监督的机器学习
来自最大可用AUD和酒精使用数据集的结构性脑成像数据的算法
童年至老年(总n = 61,428)。我将研究这些生物型在整个生命周期的稳定性,包括
在没有大量酒精饮酒的未经物质的儿童和成年人中
基于神经行为的基于阶段的成瘾结构(即冲动,负面影响,认知)和酒精
参与轨迹。然后,我将对AUD生物型进行全基因组的关联研究,以否定
它们的遗传结构,遗传相关性和可能被利用用于药物的潜在分子途径
重新定位。该赠款在半监督机器学习中发展了我的技能,AUD异质
演示,多元基因组方法和多摩变分析方法。这些技能将
充当计划的R01提交的背景,该提交将在大规模数据分析中利用我的背景
在物质使用研究的生物学方式上翻译。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander S Hatoum其他文献
Alexander S Hatoum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander S Hatoum', 18)}}的其他基金
Mass Multivariate Derivation and Validation of AUD Biotypes using Developmental Imaging and Genomic Approaches
使用发育成像和基因组方法对 AUD 生物型进行大规模多变量推导和验证
- 批准号:
10688177 - 财政年份:2022
- 资助金额:
$ 17.94万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Novel Calcium Channel Therapeutic for the Treatment of Asthma
开发治疗哮喘的新型钙通道疗法
- 批准号:
10603554 - 财政年份:2023
- 资助金额:
$ 17.94万 - 项目类别:
Using implementation mapping to maximize equity of school-based policies for obesity prevention
利用实施规划最大限度地提高基于学校的肥胖预防政策的公平性
- 批准号:
10572736 - 财政年份:2023
- 资助金额:
$ 17.94万 - 项目类别:
The trigeminal nociceptive-pain pathway in pediatric mTBI: peripheral and central contributions to photophobia
儿科 mTBI 中的三叉神经伤害性疼痛通路:畏光的外周和中枢贡献
- 批准号:
10656665 - 财政年份:2023
- 资助金额:
$ 17.94万 - 项目类别:
Investigating interference-control in ADHD using a novel forced-response method
使用新颖的强制响应方法研究 ADHD 的干扰控制
- 批准号:
10591920 - 财政年份:2023
- 资助金额:
$ 17.94万 - 项目类别: