Reprogramming the tumormicroenvironment to improve immunotherapy of glioblastoma
重新编程肿瘤微环境以改善胶质母细胞瘤的免疫治疗
基本信息
- 批准号:10417806
- 负责人:
- 金额:$ 37.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:Angiotensin ReceptorAntibodiesAntigen PresentationAntigensAntihypertensive AgentsBloodBone MarrowBrain EdemaCD4 Positive T LymphocytesCD8-Positive T-LymphocytesCentral Nervous System NeoplasmsChemoresistanceClinical TrialsCoculture TechniquesCross PresentationCytotoxic T-LymphocytesDataDendritic CellsDendritic cell activationEdemaFailureFlow CytometryFutureGeneticGlioblastomaHumanImmuneImmunosuppressionImmunotherapyInfiltrationInterferon Type IILong-Term SurvivorsLosartanMalignant NeoplasmsMeasuresMediatingMicrogliaModelingMusMyelogenousMyeloid-derived suppressor cellsNewly DiagnosedOralOutcomePathway interactionsPatientsPerfusionPharmacologyPhysiologic pulsePorcupinesRecurrenceRefractoryRegulatory T-LymphocyteResistanceRoleSpleenSteroidsSystemT-LymphocyteTNF geneTestingToxic effectTumor ImmunityTumor-infiltrating immune cellsWNT Signaling PathwayWild Type MouseWorkanti-PD-1anti-PD1 antibodiesbasebiomarker panelbone celldesigndraining lymph nodeeffector T cellepithelial to mesenchymal transitiongranulocyteimmune checkpoint blockersimprovedimproved outcomeinhibitorinsightmacrophagemonocytenovelphase III trialresistance mechanismresponsesingle-cell RNA sequencingstem cellsstemnesstherapeutic targettherapy resistanttranscriptome sequencingtreatment armtreatment responsetumortumor growthtumor microenvironmenttumor-immune system interactions
项目摘要
Glioblastoma (GBM) is a uniformly fatal malignancy with limited treatment options. Immune checkpoint
blockers (ICBs) have revolutionized the treatment of several malignancies, but have failed in all Phase III
trials in newly diagnosed and recurrent glioblastoma (GBM) patients. This limited efficacy of ICBs is due to
profound immunosuppression in the GBM tumor microenvironment (TME) caused by paucity of cytotoxic T
cells, abundance of regulatory T cells, resident macrophages and microglia and infiltration of myeloid-
derived cells from the bone marrow. Wnt signaling fuels GBM progression by aiding proliferation, stemness,
epithelial-to-mesenchymal transition and chemoresistance. However, the role of Wnt signaling in immune
suppression in GBM is not known. In our preliminary studies we found that Wnt signaling is elevated in
murine and human GBMs. A porcupine inhibitor WNT974 -- that blocks Wnt signaling -- in combination with
anti-PD-1 antibody (αPD1) prolonged the survival of GBM-bearing mice. This increased survival was
accompanied by an expansion of a novel DC3-like dendritic cell state and decrease in granulocytic myeloid-
derived suppressor cells (gMDSCs) that may mediate the response to this combination in responding tumors.
By contrast, poorly-responding tumors showed an increase in monocytic (m) MDSCs, insufficient T cell infiltration
and T cell effector function, suggesting potential resistance mechanisms. Our prior work shows that genetic
deletion or pharmacological inhibition of Wnt signaling disrupts the GBM vasculature and makes it leaky.
Moreover, ICBs themselves increase edema in GBM patients and require the use of steroids that are highly
immunosuppressive. Our preliminary studies show that losartan, an angiotensin receptor blocker, can reduce
αPD1-induced edema and reprogram the immunosuppressive TME to an immunostimulatory milieu to favor T
cell infiltration and effector function. Building on these exciting findings, our overarching hypothesis is that Wnt
signaling reprograms the GBM tumor microenvironment from immune suppressive to immune
stimulatory, thus potentiating αPD1 therapy, and adding losartan further enhances the outcome by
overcoming treatment resistance mechanisms, and reducing edema. We will test this hypothesis by
examining the function of (a) antigen cross-presenting DCs and (b) decreased gMDSCs in mediating the
response to WNT974 and αPD1 (Aim 1). We will also test the hypothesis that resistance to WNT974+αPD1
is caused by (a) increased mMDSCs and (b) lack of T cell infiltration and function (Aim 2). In Aim 3, we will
test the hypothesis that the combination of losartan with Wnt-inhibition and αPD1 will (a) reduce mMDSCs
infiltration and increase T cell infiltration and effector function and (b) alleviate edema and provide durable
responses in GBMs that are refractory to WNT974+αPD1. If successful, our results will inform the design of
future GBM clinical trials to improve the outcome of ICBs using agents currently in clinical trials for non-CNS
tumors (WNT974: e.g., NCT01351103; and losartan: NCT03563248).
胶质母细胞瘤(GBM)是一种统一的致命恶性肿瘤,治疗方案有限。免疫检查点
阻滞剂(ICB)彻底改变了几种恶性肿瘤的治疗
新诊断和复发性胶质母细胞瘤(GBM)患者的试验。 ICB效率有限的是由于
由细胞毒性T的缺乏引起的GBM肿瘤微环境(TME)的深刻免疫抑制
细胞,调节性T细胞的抽象,居民巨噬细胞和小胶质细胞以及髓样的浸润
从骨髓派生的细胞。 Wnt信号通过帮助增殖,茎,
上皮到间质的过渡和化学抗性。但是,Wnt信号在免疫中的作用
GBM中的抑制尚不清楚。在我们的初步研究中,我们发现Wnt信号在
鼠和人类GBM。豪猪抑制剂WNT974(阻止Wnt信号传导)结合使用
抗PD-1抗体(αPD1)延长了含GBM的小鼠的存活率。生存的增加是
伴随着新型DC3样树突状细胞状态的扩张,并降低了粒细胞髓细胞 -
衍生的抑制细胞(GMDSC)可能介导对肿瘤的反应响应。
相比之下,响应不良的肿瘤显示单核细胞(M)MDSC的增加,T细胞浸润不足
和T细胞效应子功能,表明潜在的抗性机制。我们先前的工作表明遗传
Wnt信号传导的缺失或药理抑制会破坏GBM脉管系统,并使其漏水。
此外,ICB本身增加了GBM患者的水肿,需要使用高度的类固醇
免疫抑制。我们的初步研究表明,血管紧张素接收器阻滞剂Losartan可以减少
αPD1诱导的水肿并将免疫抑制性TME重新编程为免疫刺激环境,以偏爱T
细胞浸润和效应子功能。在这些令人兴奋的发现的基础上,我们的总体假设是
信号传导重新编程了从免疫抑制至免疫的GBM肿瘤微环境
刺激性,从而增强αPD1治疗,并添加Losartan进一步增强了结果
克服治疗抗性机制,并减少水肿。我们将通过
检查(a)抗原交叉呈递DC的功能和(b)在介导的GMDSC降低
对WNT974和αPD1的响应(AIM 1)。我们还将检验以下假设:对WNT974+αPD1的抗性
是由(a)增加的MMDSC和(b)缺乏T细胞浸润和功能引起的(AIM 2)。在AIM 3中,我们将
检验氯沙坦与WNT抑制和αPD1的组合将(a)降低MMDSC的假设
浸润并增加T细胞浸润和效应子功能,(b)减轻水肿并提供耐用
对WNT974+αPD1难治性的GBM中的响应。如果成功,我们的结果将为您的设计提供信息
未来的GBM临床试验,以使用目前在非CNS临床试验中的代理来改善ICB的结果
肿瘤(WNT974:例如NCT01351103;和Losartan:NCT03563248)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rakesh K. Jain其他文献
PACHYONCYHIA CONGENITA TYPE 2
先天性粗眼病 2 型
- DOI:
10.1111/j.0736-8046.2004.21430.x - 发表时间:
2004 - 期刊:
- 影响因子:1.5
- 作者:
R. Sarkar;Rakesh K. Jain - 通讯作者:
Rakesh K. Jain
Cellular and molecular neuroscience
细胞和分子神经科学
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Richard Eisenberg;A. Fersht;D. Piperno;Natasha V. Raikhel;Neil H. Shubin;Solomon H. Snyder;B. L. Turner;Peter K. Vogt;Stephen T. Warren;David A. Weitz;William C. Clark;N. Dickson;Pamela A. Matson;D. Denlinger;J. Eppig;R. M. Roberts;Linda J. Saif;Richard G. Klein;C. O. Lovejoy;O. JamesF.;Connell;Elsa M. Redmond;Peter J. Bickel;D. Donoho;Donald Geman;J. Sethian;D. Awschalom;Matthew P. Fisher;Zachary Fisk;John D. Weeks;M. Botchan;F. U. Hartl;Edward D. Korn;S. Kowalczykowski;M. Marletta;K. Mizuuchi;Dinshaw Patel;Brenda A. Schulman;James A. Wells;Denis Duboule;Brigid L. M. Hogan;Roel Nusse;Eric N. Olson;M. Rosbash;Gertrud M. Schüpbach;David E. Clapham;Pietro V. De Camilli;R. Huganir;Yuh;J. Nathans;Charles F. Stevens;Joseph S. Takahashi;G. Turrigiano;S. J. Benkovic;Harry B. Gray;Jack Halpern;Michael L. Klein;Raphael D. Levine;T. Mallouk;T. Marks;J. Meinwald;P. Rossky;D. Tirrell;eld;T. Cerling;W. G. Ernst;A. Ravishankara;Alexis T. Bell;James J. Collins;Mark E. Davis;P. Debenedetti;J. Dumesic;Evelyn L. Hu;Rakesh K. Jain;John A. Rogers;J. Seinfeld;D. Futuyma;Daniel L. Hartl;D. M. Hillis;David Jablonski;R. Lenski;Gene E. Robinson;J. Strassmann;Kathryn V. Anderson;John Carlson;Iva S. Greenwald;P. Hanawalt;Mary;D. E. Koshland;R. DeFries;Susan Hanson;Robert L. Coffman;Peter Cresswell;K. C. Garcia;T. W. Mak;P. Marrack;R. Medzhitov;Carl F. Nathan;Lawrence Steinman;Tadatsugu Taniguchi;Arthur Weiss;J. Bennetzen;James C. Carrington;Vicki L. Chandler;B. Staskawicz - 通讯作者:
B. Staskawicz
Irradiation of a primary tumor enhances inhibition of angiogenesis induced at a secondary site
- DOI:
10.1016/s0360-3016(98)80191-0 - 发表时间:
1998-01-01 - 期刊:
- 影响因子:
- 作者:
Alan C. Hartford;Takeshi Gohongi;Dai Fukumura;Rakesh K. Jain - 通讯作者:
Rakesh K. Jain
In vitro and in vivo quantification of adhesion between leukocytes and vascular endothelium.
白细胞和血管内皮之间粘附的体外和体内定量。
- DOI:
10.1385/0-89603-516-6:553 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Rakesh K. Jain;L. Munn;D. Fukumura;R. Melder - 通讯作者:
R. Melder
Xanthan gum: an economical substitute for agar in plant tissue culture media
黄原胶:植物组织培养基中琼脂的经济替代品
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:6.2
- 作者:
Rakesh K. Jain;S. Babbar - 通讯作者:
S. Babbar
Rakesh K. Jain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rakesh K. Jain', 18)}}的其他基金
Reprogramming the tumormicroenvironment to improve immunotherapy of glioblastoma
重新编程肿瘤微环境以改善胶质母细胞瘤的免疫治疗
- 批准号:
10595045 - 财政年份:2022
- 资助金额:
$ 37.96万 - 项目类别:
Improving treatment of HER2+ breast cancer brain metastasis by targeting lipid metabolism
通过靶向脂质代谢改善 HER2 乳腺癌脑转移的治疗
- 批准号:
10185953 - 财政年份:2021
- 资助金额:
$ 37.96万 - 项目类别:
Improving treatment of HER2+ breast cancer brain metastasis by targeting lipid metabolism
通过靶向脂质代谢改善 HER2 乳腺癌脑转移的治疗
- 批准号:
10397627 - 财政年份:2021
- 资助金额:
$ 37.96万 - 项目类别:
Improving treatment of HER2+ breast cancer brain metastasis by targeting lipid metabolism
通过靶向脂质代谢改善 HER2 乳腺癌脑转移的治疗
- 批准号:
10620649 - 财政年份:2021
- 资助金额:
$ 37.96万 - 项目类别:
Targeting physical stress-driven mechanisms to overcome glioblastoma treatment resistance
针对物理压力驱动机制克服胶质母细胞瘤治疗耐药性
- 批准号:
10696949 - 财政年份:2021
- 资助金额:
$ 37.96万 - 项目类别:
Targeting physical stress-driven mechanisms to overcome glioblastoma treatment resistance
针对物理压力驱动机制克服胶质母细胞瘤治疗耐药性
- 批准号:
10273309 - 财政年份:2021
- 资助金额:
$ 37.96万 - 项目类别:
Improving treatment of brain metastases from HER2-positive breast cancer
改善 HER2 阳性乳腺癌脑转移的治疗
- 批准号:
8864389 - 财政年份:2015
- 资助金额:
$ 37.96万 - 项目类别:
Dissecting Pediatric Brain Tumor Microenvironment to Improve Treatment
剖析小儿脑肿瘤微环境以改善治疗
- 批准号:
9334783 - 财政年份:2015
- 资助金额:
$ 37.96万 - 项目类别:
Dissecting Pediatric Brain Tumor Microenvironment to Improve Treatment
剖析小儿脑肿瘤微环境以改善治疗
- 批准号:
9766197 - 财政年份:2015
- 资助金额:
$ 37.96万 - 项目类别:
Overcoming Resistance to Anti-VEGF Treatment of Glioblastoma
克服胶质母细胞瘤抗 VEGF 治疗的耐药性
- 批准号:
8463131 - 财政年份:2013
- 资助金额:
$ 37.96万 - 项目类别:
相似国自然基金
人源化小鼠筛选猴痘抗体及机制研究
- 批准号:82373778
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
抗HTNV抗体mRNA修饰MSC在肾综合征出血热治疗中的作用研究
- 批准号:82302487
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
- 批准号:32371262
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向肿瘤内T细胞的双特异性抗体治疗策略研究
- 批准号:82371845
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
靶向DLL3和γδ T细胞的双特异抗体对小细胞肺癌的免疫治疗活性研究
- 批准号:32300783
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Tumor-Targeted Multimodality Nanoscale Coordination Polymers for Chemo-Immunotherapy of Metastatic Colorectal Cancer
用于转移性结直肠癌化疗免疫治疗的肿瘤靶向多模态纳米配位聚合物
- 批准号:
10639649 - 财政年份:2023
- 资助金额:
$ 37.96万 - 项目类别:
Non-canonical epitope presentation and antigen processing by MHC-E
MHC-E 的非典型表位呈递和抗原加工
- 批准号:
10801509 - 财政年份:2023
- 资助金额:
$ 37.96万 - 项目类别:
Precision Glycoengineering of an HCV Envelope-Based Nanoparticle Vaccine
HCV 包膜纳米颗粒疫苗的精密糖工程
- 批准号:
10759994 - 财政年份:2023
- 资助金额:
$ 37.96万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 37.96万 - 项目类别:
Democratizing CAR T cell therapy by in situ programming of virus-specific T cells
通过病毒特异性 T 细胞的原位编程使 CAR T 细胞疗法大众化
- 批准号:
10739646 - 财政年份:2023
- 资助金额:
$ 37.96万 - 项目类别: