Plastic Synaptic Interconnections between Principal cells of the Ventral Cochlear Nucleus
腹侧耳蜗核主细胞之间的塑料突触互连
基本信息
- 批准号:10415856
- 负责人:
- 金额:$ 44.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:Acoustic NerveAcoustic StimulationAction PotentialsAffectAxonBrain StemCell NucleusCellsCellular MembraneChemosensitizationCochlear nucleusCollaborationsComplexComputer ModelsDendritesExhibitsFeedbackFire - disastersFrequenciesHearingHodgkin-Huxley modelHumanInferiorInjectionsInterneuronsLeadMammalsMeasurementMeasuresMediatingModelingMusN-Methyl-D-Aspartate ReceptorsNerve FibersNeuronsNeurotransmittersNitric OxideNitric Oxide DonorsNitric Oxide PathwayNitric Oxide Synthase Type IOxidesPathway interactionsPharmacologyPhysiologicalPlayPositioning AttributeProbabilityPropertyRoleSensitivity Training GroupsSignal PathwaySignal TransductionSliceSoluble Guanylate CyclaseSourceSpeechSpeech SoundSynapsesSynaptic plasticityTestingThalamic structureWorkauditory nucleiauditory pathwaybasedorsal cochlear nucleusexperimental studyextracellularhearing impairmentlateral superior olivemodels and simulationneural modelneural networknovelpatch clamppostsynapticpredicting responsepresynapticresponsesimulationsoundstellate celltrapezoid bodyvoltage
项目摘要
Project Summary
T Stellate cells of the ventral cochlear nucleus (VCN) form an important ascending pathway that transmits
spectral information from the auditory nerve to numerous auditory nuclei. They innervate the olivocochlear
efferents in the ventral nucleus of the trapezoid body, the lateral superior olive, the inferior colliculi and the
thalamus. In preliminary experiments we have discovered that groups of T stellate cells within an isofrequency
lamina are bidirectionally interconnected through excitatory synaptic connections that can be potentiated. In
dual, whole-cell patch-clamp recordings from T stellate cells, firing in a presynaptic cell generally evoked no
EPSCs in the postsynaptic cell unless presynaptic firing was paired with postsynaptic depolarization. These
findings are exciting for two reasons. First is that the mechanism underlying that potentiation is new and
unprecedented. Postsynaptic depolarization increased the probability of recorded EPSCs, a presynaptic
function, implicating the involvement of a retrograde messenger. Our preliminary results support the hypothesis
that nitric oxide serves as that retrograde signal. Aim 1 is to use intracellular recordings in slices to gain a
deeper understanding of the mechanisms that underlie potentiation of connections between T stellate cells and
to understand their source and dynamics. We will identify what neurons participate in polysynaptic
connections, how synaptic excitation by auditory nerve fibers affects the plasticity of interconnections, examine
signaling through the nitric oxide pathway, and measure rates at which potentiation develop and fade. Second
is that our discovery reveals a new form of central gain control at the network level. Bidirectional, excitatory
interconnections indicate that T stellate cells in an isofrequency lamina form a network and could explain how
T stellate cells can sharpen the encoding of spectral peaks. These interconnections could also form synaptic
positive feedback loops that lead to hyperexcitability in the face of loss of auditory nerve fibers and the
consequent uncoupling of excitation and inhibition. Aim 2 is to use computational neural models to understand
the implications of excitatory interconnections between T stellate cells on their encoding of sound. We will
implement models that can simulate the response features of single T stellate cells and build an interconnected
neural network to understand how network connectivity contributes to potentiation. We will test the hypothesis
that excitatory interconnections enhance the encoding of spectral peaks and that inhibition is required to
stabilize the network.
项目概要
腹侧耳蜗核 (VCN) 的 T 星状细胞形成重要的上行通路,传递信息
从听觉神经到众多听觉核团的光谱信息。它们支配橄榄耳蜗
传出神经分布于梯形体的腹侧核、外侧上橄榄、下丘和
丘脑。在初步实验中,我们发现等频内的 T 星状细胞群
层通过可增强的兴奋性突触连接双向互连。在
来自 T 星状细胞的双重全细胞膜片钳记录,在突触前细胞中放电通常不会引起任何反应。
EPSC 位于突触后细胞中,除非突触前放电与突触后去极化配对。这些
研究结果令人兴奋有两个原因。首先,增强作用的机制是新的并且
空前的。突触后去极化增加了记录 EPSC 的可能性,EPSC 是突触前的一种
功能,暗示逆行信使的参与。我们的初步结果支持假设
一氧化氮充当逆行信号。目标 1 是利用切片中的细胞内记录来获得
更深入地了解 T 星状细胞和 T 星状细胞之间连接增强的机制
了解它们的来源和动态。我们将确定哪些神经元参与多突触
连接,听觉神经纤维的突触兴奋如何影响互连的可塑性,检查
通过一氧化氮途径发出信号,并测量增强作用发展和减弱的速率。第二
我们的发现揭示了一种新形式的网络级中央增益控制。双向、兴奋
互连表明等频层中的 T 星状细胞形成一个网络,并且可以解释如何
T星状细胞可以锐化光谱峰值的编码。这些互连也可以形成突触
正反馈回路会导致听觉神经纤维损失时过度兴奋,
随之而来的兴奋和抑制的脱钩。目标 2 是使用计算神经模型来理解
T 星状细胞之间的兴奋性互连对其声音编码的影响。我们将
实现可以模拟单个 T 星状细胞响应特征的模型并构建互连的
神经网络来了解网络连接如何促进增强。我们将检验假设
兴奋性互连增强了谱峰的编码,并且需要抑制
稳定网络。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local targets of T-stellate cells in the ventral cochlear nucleus.
- DOI:10.1002/cne.25378
- 发表时间:2022-11
- 期刊:
- 影响因子:2.5
- 作者:Lin, Lin;Campbell, Jay;Oertel, Donata;Smith, Philip H.
- 通讯作者:Smith, Philip H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PHILIP H SMITH其他文献
PHILIP H SMITH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PHILIP H SMITH', 18)}}的其他基金
Structure and function of the medial superior olive
内侧上橄榄的结构和功能
- 批准号:
9115567 - 财政年份:2013
- 资助金额:
$ 44.8万 - 项目类别:
Structure and function of the medial superior olive
内侧上橄榄的结构和功能
- 批准号:
8728798 - 财政年份:2013
- 资助金额:
$ 44.8万 - 项目类别:
Structure and function of the medial superior olive
内侧上橄榄的结构和功能
- 批准号:
8578207 - 财政年份:2013
- 资助金额:
$ 44.8万 - 项目类别:
Structure and function of the medial superior olive
内侧上橄榄的结构和功能
- 批准号:
8902103 - 财政年份:2013
- 资助金额:
$ 44.8万 - 项目类别:
Collicular influence on auditory thalamic neurons
丘脑对听觉丘脑神经元的影响
- 批准号:
7546636 - 财政年份:2005
- 资助金额:
$ 44.8万 - 项目类别:
Collicular influence on auditory thalamic neurons
丘脑对听觉丘脑神经元的影响
- 批准号:
7162910 - 财政年份:2005
- 资助金额:
$ 44.8万 - 项目类别:
Collicular influence on auditory thalamic neurons
丘脑对听觉丘脑神经元的影响
- 批准号:
6865356 - 财政年份:2005
- 资助金额:
$ 44.8万 - 项目类别:
Collicular influence on auditory thalamic neurons
丘脑对听觉丘脑神经元的影响
- 批准号:
7337090 - 财政年份:2005
- 资助金额:
$ 44.8万 - 项目类别:
Collicular influence on auditory thalamic neurons
丘脑对听觉丘脑神经元的影响
- 批准号:
7005833 - 财政年份:2005
- 资助金额:
$ 44.8万 - 项目类别:
相似国自然基金
成骨细胞的听觉感应
- 批准号:31570943
- 批准年份:2015
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Improving Cochlear Implant Outcomes Through Modeling and Programming Strategies Based on Human Inner Ear Pathology
通过基于人类内耳病理学的建模和编程策略改善人工耳蜗的效果
- 批准号:
10825043 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Peripheral and central contributions to auditory temporal processing deficits and speech understanding in older cochlear implantees
外周和中枢对老年人工耳蜗植入者听觉时间处理缺陷和言语理解的贡献
- 批准号:
10444172 - 财政年份:2022
- 资助金额:
$ 44.8万 - 项目类别:
Peripheral and central contributions to auditory temporal processing deficits and speech understanding in older cochlear implantees
外周和中枢对老年人工耳蜗植入者听觉时间处理缺陷和言语理解的贡献
- 批准号:
10630111 - 财政年份:2022
- 资助金额:
$ 44.8万 - 项目类别:
The electrode-neural interface in auditory brainstem implants
听觉脑干植入物中的电极神经接口
- 批准号:
10605359 - 财政年份:2022
- 资助金额:
$ 44.8万 - 项目类别:
The electrode-neural interface in auditory brainstem implants
听觉脑干植入物中的电极神经接口
- 批准号:
10432541 - 财政年份:2022
- 资助金额:
$ 44.8万 - 项目类别: