Investigating Network Plasticity Effects of Repetitive Brain Stimulation Following Invasive and Noninvasive Methods in Humans
研究人类侵入性和非侵入性方法重复大脑刺激的网络可塑性效应
基本信息
- 批准号:10415845
- 负责人:
- 金额:$ 18.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAnteriorAntidepressive AgentsAreaBedsBrainBrain DiseasesBrain regionClinicalClinical Trials DesignDataDisease remissionElectric StimulationElectroencephalographyElectrophysiology (science)EmotionalEnvironmentEpilepsyEvoked PotentialsFutureGenerationsGoalsGoldHumanImplanted ElectrodesIndividualInsula of ReilIntractable EpilepsyIowaLateralLightMagnetic Resonance ImagingMajor Depressive DisorderMapsMeasuresMental DepressionMentored Patient-Oriented Research Career Development AwardMentorsMentorshipMethodologyMethodsModalityMonitorMoodsOperative Surgical ProceduresOutcomeParietal LobePatient CarePatientsPatternPharmaceutical PreparationsPhysiologic pulsePhysiologyPrefrontal CortexProtocols documentationPsychotherapyRefractoryReproducibilityResearchResolutionRestScalp structureSeizuresSiteStimulusStructureSurfaceTechniquesTestingTherapeuticTherapeutic UsesTrainingTranscranial magnetic stimulationTreatment EfficacyTreatment ProtocolsUniversitiesWorkantidepressant effectbasecareercingulate cortexdepressed patientdesigndisabilityexperiencehuman subjectimprovedindexingneurophysiologyneuropsychiatric disorderneuroregulationnew technologynovelnovel strategiespersistent symptomrepetitive transcranial magnetic stimulationresponsespatiotemporalstandard measuretargeted biomarkertooltreatment response
项目摘要
Project Summary
The goal of this Mentored Patient-Oriented Research Career Development Award (K23) application is to
support the additional training, mentorship and experience needed to develop a new methodology for
analyzing the effects of repetitive brain stimulation using intracranial electroencephalography (iEEG) in
humans. One form of repetitive brain stimulation is transcranial magnetic stimulation (TMS). TMS has
revolutionized the field of therapeutics for neuropsychiatric disorders – it is a novel, noninvasive treatment
option used most commonly for medication-refractory major depressive disorder. Despite this, remission rates
from its use are suboptimal and ideal stimulation parameters are unknown.
Suboptimal outcomes are due in large part to our poor understanding of TMS neurophysiology and
antidepressant effects. TMS is thought to work by altering brain excitability within a network of targeted brain
structures; for depression, this target is an emotional network including the dorsolateral prefrontal cortex. The
ability of the brain to change excitability in response to repeated stimuli is referred to as plasticity. Noninvasive
methods of measuring plasticity, such as scalp EEG and magnetic resonance imaging (MRI), are often
imprecise and unreliable. This project proposes a novel method to invasively characterize brain plasticity
induced by intracranial stimulation (Aim 1) or TMS (Aim 2) with exquisite spatiotemporal resolution. The
method involves using iEEG single-pulse evoked potentials to probe and quantify excitability change (a
correlate of plasticity) after repetitive stimulation in epilepsy patients. Network connectivity profiles will be
analyzed with both iEEG and resting state MRI (Aim 3) to provide a unique bridge between invasive and
noninvasive physiology measures. This project tests the hypothesis that repetitive brain stimulation
(delivered via TMS and intracranial stimulation) will alter brain excitability in a parameter-dependent
manner, and these effects will be most pronounced within the nodes of the stimulated brain network.
A better understanding of how repetitive stimulation propagates through brain networks and alters brain
excitability will revitalize the to-date fruitless search for reproducible biomarkers of target engagement and
treatment response with these new technologies. Novel aspects of this study include the use of TMS in human
subjects with iEEG, and the unique combination of both invasive and noninvasive connectivity measures (iEEG
and MRI) to deeply characterize network effects of stimulation. Future directions will be 1) using this method to
evaluate and refine novel brain stimulation protocols to optimize plasticity and therapeutic efficacy, and 2)
applying learned principles about network effects of repetitive stimulation to inform clinical trial design and
therapeutic use in other brain disorders, such as depression. The University of Iowa and this mentor team
provide a rich research environment and world-class facilities for implementing this proposal. These K23
activities align with my long-term career goal of optimizing therapeutic brain stimulation to improve patient care.
项目摘要
这个受过指导的注重患者研究职业发展奖(K23)的目标是
支持开发一种新方法所需的额外培训,精神训练和经验
使用颅内脑电图(IEEG)在重复性大脑刺激中的影响
人类。重复性大脑刺激的一种形式是扭转磁刺激(TMS)。 TMS有
彻底改变了神经精神疾病的理论领域 - 这是一种新颖的无创治疗
选项最常用于药物难治性重度抑郁症。尽管如此,缓解率
从其使用中是次优的,理想的刺激参数尚不清楚。
次优的结果在很大程度上是由于我们对TMS神经生理学和
抗抑郁作用。人们认为TM可以通过改变目标大脑网络中令人兴奋的大脑来起作用
结构;对于抑郁症,该目标是一个情感网络,包括背侧前额叶皮层。
大脑因反复刺激而改变令人兴奋的能力被称为可塑性。无创
测量可塑性的方法,例如头皮脑电图和磁共振成像(MRI),通常是
不精确和不可靠。该项目提出了一种新颖的方法,可以使大脑可塑性表征
由颅内刺激(AIM 1)或TMS(AIM 2)诱导,具有独家空间临时分辨率。这
方法涉及使用IEEG单脉冲诱发的电位来探测和量化令人兴奋的变化(a
癫痫患者重复刺激后的可塑性相关。网络连接配置文件将是
与IEEG和静止状态MRI(AIM 3)进行分析,以提供侵入性和
非侵入性生理学措施。该项目检验了重复大脑刺激的假设
(通过TMS和颅内模拟传递)将改变与参数有关的大脑
方式,这些影响将在刺激的大脑网络的节点中最为明显。
更好地理解重复刺激如何通过大脑网络传播并改变大脑
令人兴奋的将振兴待命的毫无结果寻找目标参与的可再现生物标志物和
这些新技术的治疗反应。这项研究的新颖方面包括在人类中使用TMS
具有IEEG的主题,以及侵入性和无创连通性措施的独特组合(IEEG
和MRI)以深刻地表征刺激的网络效应。未来的指示将为1)使用此方法
评估和完善新的大脑刺激方案以优化可塑性和治疗效率,2)
应用有关重复刺激网络影响的学习原则,以告知临床试验设计和
在其他脑部疾病(例如抑郁症)中的治疗用途。爱荷华大学和这个心理团队
提供丰富的研究环境和世界一流的设施来实施该建议。这些K23
活动符合我优化治疗性大脑刺激以改善患者护理的长期职业目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Thomas Trapp其他文献
Nicholas Thomas Trapp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Thomas Trapp', 18)}}的其他基金
Investigating Network Plasticity Effects of Repetitive Brain Stimulation Following Invasive and Noninvasive Methods in Humans
研究人类侵入性和非侵入性方法重复大脑刺激的网络可塑性效应
- 批准号:
10655436 - 财政年份:2021
- 资助金额:
$ 18.68万 - 项目类别:
相似国自然基金
肝胆肿瘤治疗性溶瘤腺病毒疫苗的研制及其临床前应用性探索
- 批准号:82303776
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
莫氏细胞早期异常活化介导的前下托-齿状回环路构建在癫痫发生中的作用研究
- 批准号:82371458
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于MST4-YAP-MYC信号通路的慢痞消调控氧化磷酸化水平治疗胃癌前病变的机制研究
- 批准号:82374292
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
CXCL12趋化CXCR4+/α-SMA+成骨前体细胞促进黄韧带骨化的机制研究
- 批准号:82302745
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紫外光解中间体激活荧光构建亚硝胺及其前体物的新方法和机理研究
- 批准号:82373631
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Kappa Opioid Receptor in Paraventricular Nucleus of Thalamus
丘脑室旁核中的 Kappa 阿片受体
- 批准号:
10659960 - 财政年份:2023
- 资助金额:
$ 18.68万 - 项目类别:
Integrating 1H MRS with 2H-Labeled Glucose to Characterize Dynamic Glutamate Metabolism in Major Depressive Disorder
将 1H MRS 与 2H 标记的葡萄糖相结合来表征重度抑郁症的动态谷氨酸代谢
- 批准号:
10668075 - 财政年份:2023
- 资助金额:
$ 18.68万 - 项目类别:
2/2 Large-scale, single-cell characterization of molecular and cellular networks of mood regulation circuitry in major depressive disorder
2/2 重度抑郁症情绪调节回路的分子和细胞网络的大规模单细胞表征
- 批准号:
10745412 - 财政年份:2023
- 资助金额:
$ 18.68万 - 项目类别:
1/2 Large-scale, single-cell characterization of molecular and cellular networks of mood regulation circuitry in major depressive disorder
1/2 重度抑郁症情绪调节回路的分子和细胞网络的大规模单细胞表征
- 批准号:
10744931 - 财政年份:2023
- 资助金额:
$ 18.68万 - 项目类别:
A translational approach for novel mechanisms of epigenetic regulation in treatment responses: toward a precision medicine model
治疗反应中表观遗传调控新机制的转化方法:走向精准医学模型
- 批准号:
10344520 - 财政年份:2022
- 资助金额:
$ 18.68万 - 项目类别: