Public health priority setting for environmental metals mixtures and birth defects

环境金属混合物和出生缺陷的公共卫生优先事项设定

基本信息

  • 批准号:
    10413856
  • 负责人:
  • 金额:
    $ 28.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Birth defects are the leading known cause of infant mortality and one of the leading sources of years of potential life lost. In fact, one out of every 33 live births in the United States results in a birth defect. The lack of known, modifiable environmental factors associated with birth defects remains a significant barrier to progress. In prior work, our team examined exposure to arsenic, manganese, cadmium, and lead in relation to birth defects. We have demonstrated that exposure to a toxic metals mixture through private well-water is associated with increased risk for birth defects. Specifically, in areas where arsenic and manganese co-occur, we observed higher-than-expected prevalence of birth defects. Current filtration technology is sufficient to reduce exposures to many toxic metals. Unfortunately, widespread adoption of filtration is infeasible due to cost, and there is a substantial gap in knowledge about how to best intervene. Ideally, controlled experiments of water filtration would be used to guide decisions about where to intervene, but, critically, obtaining such data is prohibitively expensive. Thus, public health would be well served by using existing, observational data to estimate the effects of such interventions. This innovative project will use state-of-the-art statistical methods to directly quantify the impact of potential interventions on toxic metal mixtures exposure as a strategy for reducing the risk of birth defects. This approach can be used with varying levels of sophistication to adapt to local public health needs. The overarching hypothesis of this proposal is that we can use routinely collected surveillance data to identify the public health burden of birth defects in North Carolina due to toxic metals exposures, as well as identify interventions to maximize reductions in this burden under realistic constraints on cost and feasibility. We will test this hypothesis in three specific aims. In Aim 1, we will estimate the risk of birth defects attributable to toxic metal mixtures using data on well water contamination and 1.2 million NC births from 2003-2013 from the NC Department of Health and Human Services and the NC Birth Defects Monitoring Program. We will apply a cutting-edge framework that combines Bayesian methodology with a causal inference framework to estimate attributable risks from highly correlated exposures. In Aim 2, we apply our framework to estimate the reductions in the attributable risk of birth defects under potential interventions including filtration or changing water sources. We will contrast birth defects risks under interventions that target areas of concern, such as highly exposed areas, as a way to maximize reductions in birth defects. In Aim 3, we will conduct a cost-effectiveness analysis in order to optimize available resources to reduce birth defects. This work is a paradigm shift in how environmental mixtures can be addressed. The results will provide stakeholders with data for effective decision making. Importantly, our new approach to the analysis of environmental mixtures provides a template for identifying priority exposures, areas, or groups to maximize the public health benefit of policies on exposure mixtures in resource-limited settings.
出生缺陷是婴儿死亡率的主要已知原因,也是领导者之一 多年潜在生命的来源丧失。实际上,曼联每33个活产中有一个 状态导致出生缺陷。缺乏相关的已知,可修改的环境因素 随着先天缺陷,进步仍然是一个重大的障碍。在先前的工作中,我们的团队检查了 暴露于砷,锰,镉和与先天缺陷有关的铅。我们 已经证明,通过私人井水接触有毒金属混合物是 与出生缺陷的风险增加有关。具体而言,在砷和 锰同时发生,我们观察到出生缺陷的患病率高于预期。当前的 过滤技术足以减少许多有毒金属的暴露。 不幸的是,由于成本而广泛采用过滤是不可行的,并且有一个 关于如何最好地干预的知识差距很大。理想情况下,水的受控实验 过滤将用于指导有关在哪里进行干预的决策,但批判性地获得 这样的数据非常昂贵。因此,使用 现有的观察数据以估计这种干预措施的影响。这种创新 项目将使用最先进的统计方法直接量化 有毒金属混合物暴露的潜在干预措施是减少策略 出生缺陷的风险。这种方法可以用不同的精致来适应 当地的公共卫生需求。该提案的总体假设是我们可以例行使用 收集的监视数据以确定北卡罗来纳州出生缺陷的公共卫生负担 由于有毒金属的暴露以及确定干预措施以最大程度地减少。 对成本和可行性的现实限制负担。我们将在三个中检验这一假设 具体目标。在AIM 1中,我们将估计归因于有毒的出生缺陷的风险 使用井水污染的数据和120万NC出生的金属混合物 2003 - 2013年北卡罗来纳州卫生与公共服务部以及NC出生 缺陷监视程序。我们将应用一个结合贝叶斯的尖端框架 具有因果推理框架的方法,以估算高度的归因风险 相关的暴露。在AIM 2中,我们将框架应用于估计的减少 在潜在干预措施(包括过滤或更改)下,出生缺陷的风险 水源。我们将在针对的干预措施下与先天性缺陷进行对比 关注者(例如高度暴露的区域)是一种最大程度地减少先天缺陷的方法。在AIM 3中, 我们将进行成本效益分析,以优化可用资源以减少 出生缺陷。这项工作是环境混合方式的范式转变 被解决。结果将为利益相关者提供有效决策的数据 制作。重要的是,我们对环境混合物分析的新方法为 用于确定优先暴露,区域或群体以最大化公共卫生利益的模板 有关资源有限设置中暴露混合物的政策。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

Rebecca Fry的其他基金

The UNC Chapel Hill Superfund Research Program (UNC-SRP)
北卡罗来纳大学教堂山超级基金研究计划 (UNC-SRP)
  • 批准号:
    10797455
    10797455
  • 财政年份:
    2023
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
Personalized care for prenatal stress reduction and preterm birth prevention
减轻产前压力和预防早产的个性化护理
  • 批准号:
    10608372
    10608372
  • 财政年份:
    2023
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
Core A: Administrative Core
核心A:行政核心
  • 批准号:
    10570838
    10570838
  • 财政年份:
    2020
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
The UNC Chapel Hill Superfund Research Program (UNC-SRP)
北卡罗来纳大学教堂山超级基金研究计划 (UNC-SRP)
  • 批准号:
    10570837
    10570837
  • 财政年份:
    2020
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
The UNC Chapel Hill Superfund Research Program (UNC-SRP)
北卡罗来纳大学教堂山超级基金研究计划 (UNC-SRP)
  • 批准号:
    10207906
    10207906
  • 财政年份:
    2020
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
The UNC Chapel Hill Superfund Research Program (UNC-SRP)
北卡罗来纳大学教堂山超级基金研究计划 (UNC-SRP)
  • 批准号:
    10208313
    10208313
  • 财政年份:
    2020
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
Genetic underpinning of diabetes associated with arsenic exposure
与砷暴露相关的糖尿病的遗传基础
  • 批准号:
    10561667
    10561667
  • 财政年份:
    2019
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
Genetic underpinning of diabetes associated with arsenic exposure
与砷暴露相关的糖尿病的遗传基础
  • 批准号:
    10338079
    10338079
  • 财政年份:
    2019
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
Genetic underpinning of diabetes associated with arsenic exposure
与砷暴露相关的糖尿病的遗传基础
  • 批准号:
    10093993
    10093993
  • 财政年份:
    2019
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
Developmental windows for arsenic-associated diabetes
砷相关糖尿病的发育窗口
  • 批准号:
    9769729
    9769729
  • 财政年份:
    2018
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:

相似国自然基金

采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
  • 批准号:
    32301322
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
  • 批准号:
    42377321
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
  • 批准号:
    72271190
  • 批准年份:
    2022
  • 资助金额:
    43 万元
  • 项目类别:
    面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
  • 批准号:
    72103054
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
  • 批准号:
    10826673
    10826673
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
  • 批准号:
    10752930
    10752930
  • 财政年份:
    2024
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
Impact of Medicaid Prescription Cap Policies on Treatment Outcomes for Opioid Use Disorder: A National Mixed Methods Study
医疗补助处方上限政策对阿片类药物使用障碍治疗结果的影响:一项国家混合方法研究
  • 批准号:
    10637024
    10637024
  • 财政年份:
    2023
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
Addressing Disparities In Pain Management
解决疼痛管理方面的差异
  • 批准号:
    10642345
    10642345
  • 财政年份:
    2023
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别:
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
  • 批准号:
    10677075
    10677075
  • 财政年份:
    2023
  • 资助金额:
    $ 28.95万
    $ 28.95万
  • 项目类别: