Regulation of Hepatic Macronutrient Metabolism by Mitochondrial Citrate Transport
线粒体柠檬酸盐转运对肝脏大量营养素代谢的调节
基本信息
- 批准号:10412049
- 负责人:
- 金额:$ 44.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcetatesAddressAttenuatedAutomobile DrivingCarbonChronicCitrate (si)-SynthaseCitratesCytosolDataDietDisease ProgressionEnzymesFatty LiverFatty acid glycerol estersFunctional disorderGenerationsGluconeogenesisGlucoseGlucose IntoleranceGlycolysisGoalsHealthHepaticHyperglycemiaInsulin ResistanceInvestigationKnock-outKnowledgeLinkLipidsLiverLiver MitochondriaMacronutrients NutritionMediatingMetabolicMetabolismMissionMitochondriaModelingMusNADPNon-Insulin-Dependent Diabetes MellitusPharmacologyPublic HealthReactionRegulationResearchRoleSomatotypeSourceSucroseTestingTherapeuticTimeUnited States National Institutes of Healthcitrate carrierexperimental studyfeedingglucose metabolismin vivoin vivo evaluationinnovationinsulin sensitivitylipid biosynthesisliver metabolismmetabolomicsmitochondrial metabolismnon-alcoholic fatty liver diseasenovel
项目摘要
PROJECT SUMMARY
During type 2 diabetes (T2D), loss of insulin sensitivity strongly associated with hepatic lipid accumulation increases gluconeogenesis underlying chronic hyperglycemia. Furthermore, increased hepatic de novo lipogenesis (DNL) during T2D is thought to drive insulin resistance and non-alcoholic fatty liver disease (NAFLD). Thus, identifying mechanisms directly modulating both hepatic DNL and gluconeogenesis could be uniquely valuable for understanding T2D pathophysiology and therapeutic opportunity. Cytosolic citrate is believed to be a master regulator of hepatic metabolism by reciprocally regulating glycolysis and gluconeogenesis and by supplying substrate and reducing power for DNL. Citrate is produced in the mitochondria and requires a specific transporter, the mitochondrial citrate carrier (CiC), to reach the cytosol. Thus, the CiC is predicted to occupy a central metabolic node linking hepatic mitochondrial metabolism, DNL, glucose, and reductive drive. Yet, surprisingly, the role of the CiC modulating hepatic DNL and gluconeogenesis in normal and T2D states remains sparsely addressed in vivo. The overall goal of this application is to understand how the hepatic CiC contributes to fundamental metabolism and T2D pathophysiology. This will be addressed by pursuing two specific aims: 1) Determine how hepatic CiC function regulates hepatic DNL in T2D states; and 2) Determine how hepatic CiC function contributes to hyperglycemia in T2D states. Experiments in aim 1 will test the hypothesis that disrupting hepatic CiC activity in vivo during T2D states decreases DNL, by decreasing supply of citrate as a carbon source and decreasing NAPDH available for fatty chain elongation. Experiments in aim 2 will test the hypothesis that disrupting hepatic CiC activity in vivo during T2D states decreases hyperglycemia by attenuating liver insulin resistance, shifting hepatic glucose metabolism towards glycolysis away from gluconeogenesis, and decreasing mouse correlates of NAFLD progression. Overall, the proposed investigation will test the fundamental regulatory role of the CiC in vivo and provide novel, mechanistic information on how the single metabolic step of mitochondrial citrate export contributes to the core T2D features of increased hepatic DNL and gluconeogenesis. This research is significant because successful completion will uniquely advance fundamental understanding of T2D pathophysiology. This research is innovative because it will utilize novel in vivo CiC disruption and metabolomic tracing models to test the role of the CiC role linking mitochondrial metabolism, DNL, and gluconeogenesis in T2D.
项目摘要
在2型糖尿病(T2D)期间,与肝脂质积累密切相关的胰岛素敏感性的丧失会增加慢性高血糖的基础糖生成。此外,T2D期间肝脂肪生成(DNL)的增加被认为促进胰岛素抵抗和非酒精性脂肪肝病(NAFLD)。因此,识别直接调节肝DNL和糖异生的机制对于理解T2D病理生理学和治疗机会可能是独特的。据信,通过互惠调节糖酵解和糖异生,并通过提供底物和降低DNL的能力,可以通过相互调节的糖酵解和葡萄糖生成来成为肝代谢的主要调节剂。柠檬酸盐是在线粒体中产生的,需要特定的转运蛋白,即线粒体柠檬酸盐载体(CIC)才能到达胞质溶胶。因此,预测CIC将占据中央代谢淋巴结,将肝线粒体代谢,DNL,葡萄糖和还原性驱动连接。然而,令人惊讶的是,在正常和T2D状态下,CIC调节肝DNL和糖异生的作用在体内仍然稀少。该应用的总体目标是了解肝CIC如何促进基本代谢和T2D病理生理学。这将通过追求两个具体目标来解决:1)确定肝CIC功能如何调节T2D州的肝DNL; 2)确定肝CIC功能如何在T2D状态下有助于高血糖。 AIM 1中的实验将检验以下假设:T2D状态期间肝CIC活性破坏了DNL,通过减少柠檬酸盐作为碳源的供应并降低可用于脂肪链延长的NAPDH,从而降低了DNL。 AIM 2中的实验将检验以下假设:T2D状态期间的肝CIC活性破坏了体内的肝CIC活性,通过减轻肝胰岛素抵抗,转移肝葡萄糖代谢向糖酵解转移到葡萄糖生成上,从而降低高血糖,并降低糖酵解的糖酵解,并降低小鼠进展的小鼠相关。总体而言,拟议的研究将测试CIC在体内的基本调节作用,并提供有关线粒体柠檬酸盐的单个代谢步骤如何有助于增加肝DNL和糖原发生的核心T2D特征。这项研究很重要,因为成功完成将独特地提高对T2D病理生理学的基本理解。这项研究具有创新性,因为它将利用新颖的体内CIC破坏和代谢组学模型来测试CIC在T2D中连接线粒体代谢,DNL和糖异生的作用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3-hydroxykynurenine is a ROS-inducing cytotoxic tryptophan metabolite that disrupts the TCA cycle.
3-羟基犬尿氨酸是一种 ROS 诱导细胞毒性色氨酸代谢物,可破坏 TCA 循环。
- DOI:10.1101/2023.07.10.548411
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Buchanan,JaneL;Rauckhorst,AdamJ;Taylor,EricB
- 通讯作者:Taylor,EricB
Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity.
- DOI:10.1016/j.celrep.2018.09.034
- 发表时间:2018-10-09
- 期刊:
- 影响因子:8.8
- 作者:Timper K;Paeger L;Sánchez-Lasheras C;Varela L;Jais A;Nolte H;Vogt MC;Hausen AC;Heilinger C;Evers N;Pospisilik JA;Penninger JM;Taylor EB;Horvath TL;Kloppenburg P;Brüning JC
- 通讯作者:Brüning JC
Mitochondrial citrate metabolism and efflux regulates trophoblast differentiation.
线粒体柠檬酸盐代谢和流出调节滋养层分化。
- DOI:10.1101/2023.01.22.525071
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mahr,ReneeM;Jena,Snehalata;Nashif,SereenK;Nelson,AlisaB;Rauckhorst,AdamJ;Rome,FerrolI;Sheldon,RyanD;Hughey,CurtisC;Puchalska,Patrycja;Gearhart,MicahD;Taylor,EricB;Crawford,PeterA;Wernimont,SarahA
- 通讯作者:Wernimont,SarahA
Isolated Effects of Plasma Freezing versus Thawing on Metabolite Stability.
- DOI:10.3390/metabo12111098
- 发表时间:2022-11-11
- 期刊:
- 影响因子:4.1
- 作者:
- 通讯作者:
Metabolic control of transcription.
转录的代谢控制。
- DOI:10.1126/science.adi7577
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Taylor,EricB
- 通讯作者:Taylor,EricB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric B Taylor其他文献
Temperature variability under climate change increases extinction risk of insects
气候变化下的温度变化增加了昆虫的灭绝风险
- DOI:
10.1038/s41558-022-01494-3 - 发表时间:
2022 - 期刊:
- 影响因子:30.7
- 作者:
Matthew R Siegle;Eric B Taylor;Mary I. O’Connor - 通讯作者:
Mary I. O’Connor
Eric B Taylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric B Taylor', 18)}}的其他基金
Regulation of Hepatic Macronutrient Metabolism by Mitochondrial Citrate Transport
线粒体柠檬酸盐转运对肝脏大量营养素代谢的调节
- 批准号:
10058737 - 财政年份:2015
- 资助金额:
$ 44.26万 - 项目类别:
Regulation of Hepatic Macronutrient Metabolism by Mitochondrial Citrate Transport
线粒体柠檬酸盐转运对肝脏大量营养素代谢的调节
- 批准号:
10203933 - 财政年份:2015
- 资助金额:
$ 44.26万 - 项目类别:
Regulation of Hepatic Gluconeogenesis by the Mitochondrial Pyruvate Carrier
线粒体丙酮酸载体对肝糖异生的调节
- 批准号:
9229032 - 财政年份:2015
- 资助金额:
$ 44.26万 - 项目类别:
Vms1 is a Novel Protein Critical for Mitochondrial Maintenance
Vms1 是一种对线粒体维护至关重要的新型蛋白质
- 批准号:
8526885 - 财政年份:2012
- 资助金额:
$ 44.26万 - 项目类别:
Vms1 is a Novel Protein Critical for Mitochondrial Maintenance
Vms1 是一种对线粒体维护至关重要的新型蛋白质
- 批准号:
8542595 - 财政年份:2012
- 资助金额:
$ 44.26万 - 项目类别:
Vms1 is a Novel Protein Critical for Mitochondrial Maintenance
Vms1 是一种对线粒体维护至关重要的新型蛋白质
- 批准号:
8711284 - 财政年份:2012
- 资助金额:
$ 44.26万 - 项目类别:
Lms1 is a Novel Protein Critical for Mitochondrial Maintenance
Lms1 是一种对线粒体维持至关重要的新型蛋白质
- 批准号:
7869748 - 财政年份:2010
- 资助金额:
$ 44.26万 - 项目类别:
Lms1 is a Novel Protein Critical for Mitochondrial Maintenance
Lms1 是一种对线粒体维持至关重要的新型蛋白质
- 批准号:
8132423 - 财政年份:2010
- 资助金额:
$ 44.26万 - 项目类别:
Regulation of Glucose Uptake by AS160 in Skeletal Muscle
AS160 对骨骼肌葡萄糖摄取的调节
- 批准号:
7111210 - 财政年份:2006
- 资助金额:
$ 44.26万 - 项目类别:
Regulation of Glucose Uptake by AS160 in Skeletal Muscle
AS160 对骨骼肌葡萄糖摄取的调节
- 批准号:
7209001 - 财政年份:2006
- 资助金额:
$ 44.26万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10573109 - 财政年份:2023
- 资助金额:
$ 44.26万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10818835 - 财政年份:2023
- 资助金额:
$ 44.26万 - 项目类别:
Gut microbiome and blood indices in patients with AD and their spousal caregivers
AD 患者及其配偶照顾者的肠道微生物组和血液指数
- 批准号:
10575244 - 财政年份:2023
- 资助金额:
$ 44.26万 - 项目类别:
Impact of microbiota-derived metabolites on traumatic brain injury-related neurodegeneration
微生物群衍生代谢物对创伤性脑损伤相关神经变性的影响
- 批准号:
10582762 - 财政年份:2023
- 资助金额:
$ 44.26万 - 项目类别:
Gustatory and interoceptive regulation of hypertension
高血压的味觉和内感受调节
- 批准号:
10388488 - 财政年份:2022
- 资助金额:
$ 44.26万 - 项目类别: