Role of ROP GTPases in sulfate transceptor SULTR1;2-regulated sulfur nutrient sensing
ROP GTPases 在硫酸盐受体 SULTR1;2 调节的硫营养物传感中的作用
基本信息
- 批准号:10412405
- 负责人:
- 金额:$ 14.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AllelesAmino AcidsArabidopsisBindingBiochemicalC-terminalCell NucleusCell membraneCellsCodeComplexCytoplasmDiseaseDrug TargetingElementsEnhancersEnvironmentEukaryotaEventFHL1 geneFamilyGene ExpressionGenesGeneticGenetic TranscriptionGoalsGrowth and Development functionGuanosine Triphosphate PhosphohydrolasesHumanLeadLinkMAP Kinase ModulesMalignant NeoplasmsMeasuresMediatingMineralsModelingModificationMonomeric GTP-Binding ProteinsNitratesNutrientOrganismPathologicPathway interactionsPatternPeptidesPhenotypePhosphoric Monoester HydrolasesPhosphorylationPhysiologicalPlant ModelPlantsPolymerasePost-Translational Protein ProcessingProteinsRNA Polymerase IIRNA polymerase II largest subunitRegulatory ElementReportingResearchRoleSignal TransductionSulfateSulfurSystemTestingTranscription InitiationTranscriptional RegulationWorkYeastsZincactivating transcription factorbasedetection of nutrientdrug developmentgain of functioninorganic phosphateinsightloss of functionmembermutantnovelnutritionplant fungipromoterprotein degradationprotein functionpublic health relevancereceptorrecruitresponserhorho GTP-Binding Proteinssensorsulfate transportertranscription factortranscription factor TFIIHuptake
项目摘要
ABSTRACT
Many living organisms including humans have evolved mechanisms to sense and respond to levels of mineral
nutrients or amino acids. In this application, we propose to use Arabidopsis plant sulfur (S) nutrient sensing
and signaling as an experimental system to dissect transporting receptor-mediated nutrient sensing
mechanisms. Our prior research has led to identification of sulfate transporter SULTR1;2 as a receptor. This
type of dual-function transporting receptor, termed transceptor, has been increasingly found in eukaryotic
organisms and is expected to increase nutrient use efficiency by performing both its sensing and transporting
functions. However, how plants use the transceptor SULTR1;2 to transduce the S signal in the control of gene
expression has remained a central unanswered question and becomes the focus of the present project. Our
recent studies have revealed a conserved shortcut model of transcriptional control that links Rho family small
GTPases to RNA polymerase II (Pol II) C-terminal domain (CTD) Ser phosphorylation across plants, fungi and
humans. The Pol II CTD contains various number of conserved heptad peptide repeats (Y1S2P3T4S5P6S7) in
which each amino acid can be subjected to different posttranslational modifications. Thus, the posttranslational
modification pattern is complex and collectively called the CTD code. Among the CTD code, Ser2 and Ser5
phosphorylation along the gene is very important for initiating transcription and completing the transcription
cycle. In the classical model of transcriptional control, upon activation by Rho or Ras GTPases, the MAP
kinase cascade activates transcription factors that bind to gene-specific cis-elements and helps recruit Pol II to
the core promoter. In contrast, in the shortcut model, Rho GTPase signaling directly targets the Pol II CTD
Ser2 and Ser5 phosphorylation and thus can rapidly bring about large-scale gene expression changes. We
now have preliminary evidence indicating that activity of ROP2 GTPase, which is a member of plant-unique
ROP subfamily of Rho GTPases, and levels of CTD Ser2 and Ser5 phosphorylation are impacted by S status.
In addition, ROP GTPase activity is higher in SULTR1;2 mutants. Therefore, we hypothesize that ROP2 and its
functionally redundant ROP4 act as negative regulators in SULTR1;2-mediated S sensing and signaling. The
proposed work aims to fill the major gaps from SULTR1;2 to Pol II transcription. Specifically, Aim 1 is to test
that ROP2 and ROP4 GTPases act as negative regulators in SULTR1;2-mediated S sensing and signaling
using genetic and biochemical approaches. Aim 2 is to test the hypothesis that ROP2-mediated Pol II shortcut
model is required for S response. In Aim 3, we propose to test that ROP2-controlled SLIM1 transcription factor
activity and ROP2-mediated Pol II CTD code modulation act cooperatively to achieve the most productive
transcription of S-deficiency induced S-response genes. The proposed study will not only lead to novel
mechanistic insights into how plants use nutrient transceptor SULTR1;2 and ROP signaling switch to efficiently
control gene expression but also provide a paradigm for transcriptional regulation in other organisms.
抽象的
包括人类在内的许多活生物体已经发展了机制,以感知和响应矿物水平
营养或氨基酸。在此应用中,我们建议使用拟南芥植物硫的营养感应
以及作为实验系统的信号传导,以剖析运输受体介导的营养感应
机制。我们先前的研究导致硫酸盐转运蛋白Sultr1; 2作为受体。这
在真核生物中越来越多地发现了越来越多的双功能传输受体(称为置换器)
有机体,预计将通过执行感应和运输来提高营养的使用效率
功能。然而,植物如何使用透镜Sultr1; 2在控制基因中转导S信号
表达仍然是一个未解决的中心问题,并成为本项目的重点。我们的
最近的研究表明,保守的转录控制快捷方式模型将Rho家族小
跨植物,真菌和
人类。 Pol II CTD包含各种保守的七肽重复序列(Y1S2P3T4S5P6S7)
每种氨基酸可以进行不同的翻译后修饰。因此,翻译后
修改模式是复杂的,统称为CTD代码。在CTD代码中,SER2和SER5
沿基因的磷酸化对于启动转录和完成转录非常重要
循环。在转录控制的经典模型中,在通过Rho或Ras GTPase激活后,地图
激酶级联激活与基因特异性顺算元元素结合的转录因子,并有助于募集POL II
核心启动子。相反,在快捷模型中,Rho GTPase信号直接针对Pol II CTD
Ser2和Ser5磷酸化,因此可以迅速带来大规模的基因表达变化。我们
现在有初步证据表明ROP2 GTPase的活动是植物 - 唯一成员
Rho GTPases的ROP亚家族以及CTD Ser2和Ser5磷酸化水平受S状态的影响。
另外,在SULTR1中,ROP GTPase活性较高; 2个突变体。因此,我们假设ROP2及其
功能上冗余的ROP4充当Sultr1中的负调节剂; 2介导的S传感和信号传导。这
拟议的工作旨在填补从Sultr1; 2到Pol II转录的主要空白。具体来说,目标1是测试
ROP2和ROP4 GTPases在SULTR1中充当负调节剂; 2介导的S传感和信号传导
使用遗传和生化方法。 AIM 2是检验ROP2介导的Pol II快捷方式的假设
S响应需要模型。在AIM 3中,我们建议测试ROP2控制的Slim1转录因子
活动和ROP2介导的POL II CTD代码调制法案合作以实现最有生产力的
S缺陷诱导的S响应基因的转录。拟议的研究不仅会导致新颖
机械洞察植物如何使用营养透感Sultr1; 2和ROP信号转换开关
控制基因表达,但也为其他生物体的转录调节提供了范式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ZHI-LIANG ZHENG其他文献
ZHI-LIANG ZHENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ZHI-LIANG ZHENG', 18)}}的其他基金
Role of ROP GTPases in sulfate transceptor SULTR1;2-regulated sulfur nutrient sensing
ROP GTPases 在硫酸盐受体 SULTR1;2 调节的硫营养物传感中的作用
- 批准号:
10666554 - 财政年份:2022
- 资助金额:
$ 14.54万 - 项目类别:
Dissecting ROP Small GTPase Signaling in Carbon and Nitrogen Ratio Responses
剖析碳氮比响应中的 ROP 小 GTP 酶信号传导
- 批准号:
6820413 - 财政年份:2004
- 资助金额:
$ 14.54万 - 项目类别:
相似国自然基金
拟南芥芳香族氨基酸合成中CM3与茉莉酸信号的作用机理研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
拟南芥ACT2基因在气孔运动中的作用及其编码蛋白中影响微丝组装的关键氨基酸的鉴定
- 批准号:31470011
- 批准年份:2014
- 资助金额:30.0 万元
- 项目类别:面上项目
谷氨酸受体基因参与拟南芥根系生长响应外源氨基酸的分子功能研究
- 批准号:31270881
- 批准年份:2012
- 资助金额:15.0 万元
- 项目类别:面上项目
拟南芥CSN5B与VTC1互作的重要氨基酸对维生素C生物合成的影响
- 批准号:31171171
- 批准年份:2011
- 资助金额:50.0 万元
- 项目类别:面上项目
拟南芥微管结合蛋白AtMAP65家族的功能域分析
- 批准号:30600312
- 批准年份:2006
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of ROP GTPases in sulfate transceptor SULTR1;2-regulated sulfur nutrient sensing
ROP GTPases 在硫酸盐受体 SULTR1;2 调节的硫营养物传感中的作用
- 批准号:
10666554 - 财政年份:2022
- 资助金额:
$ 14.54万 - 项目类别:
Dissecting the functional basis of butterfly-plant coevolution
剖析蝴蝶与植物协同进化的功能基础
- 批准号:
9909786 - 财政年份:2020
- 资助金额:
$ 14.54万 - 项目类别:
Dissecting the functional basis of butterfly-plant coevolution
剖析蝴蝶与植物协同进化的功能基础
- 批准号:
10786751 - 财政年份:2020
- 资助金额:
$ 14.54万 - 项目类别:
Dissecting the functional basis of butterfly-plant coevolution
剖析蝴蝶与植物协同进化的功能基础
- 批准号:
10359749 - 财政年份:2020
- 资助金额:
$ 14.54万 - 项目类别:
Dissecting the functional basis of butterfly-plant coevolution
剖析蝴蝶与植物协同进化的功能基础
- 批准号:
10596343 - 财政年份:2020
- 资助金额:
$ 14.54万 - 项目类别: