CRCNS: Neural Basis of Planning
CRCNS:规划的神经基础
基本信息
- 批准号:10410402
- 负责人:
- 金额:$ 36.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-02 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimalsArbitrationBehaviorBehavioralBrainCaliberCompetenceComplexComputersDecision MakingDecision TreesEconomicsEnvironmentEvaluationExhibitsFunctional Magnetic Resonance ImagingFutureGoalsHumanImpairmentIndividualKnowledgeLateralLearningMacaca mulattaMachine LearningMedialMental DepressionMental disordersModelingMonitorMonkeysNeuronsNeurosciencesOutcomeParticipantPatternPhysiologicalPlayPositioning AttributePrefrontal CortexPrimatesProbabilityPsyche structurePsychological reinforcementPupilResearchRewardsRoleSchizophreniaSeriesSignal TransductionSpeedStrategic PlanningTestingTrainingTreesUpdatebaseexpectationexperimental studyfictional worksimprovedlearning algorithmneuromechanismneurophysiologynonhuman primatepredictive modelingrelating to nervous systemresponsesimulationsource guides
项目摘要
Humans and other animals can choose their actions using multiple learning algorithms and decision making strategies. For example, habitual behaviors adapted to a stable environment can be selected using so-called model-free reinforcement learning algorithms, in which the value of each action is incrementally updated according to the amount of unexpected reward. The underlying neural mechanisms for this type of reinforcement learning have been intensively studied. By contrast, how the brain utilizes the animal's knowledge of its environment to plan sequential actions using a model-based reinforcement learning algorithm remains unexplored. In this application, PIs with complementary expertise will investigate how different subdivisions of the primate prefrontal cortex contribute to the evaluation and arbitration of different learning algorithms during strategic planning in primates, using a sequential game referred to as "4-in-a row". Previous studies have revealed that with training, humans improve their competence in this game by gradually switching away from a model-free reinforcement learning towards a model-based reinforcement learning in the form of a tree search. In the first set of experiments, we will train non-human primates to play the 4-in-a-row game against a computer opponent. We predict that the complexity of the strategic planning and the opponent's move violating the animal's expectation will be reflected in the speed of animal's action and pupil diameters. Next, we will test how the medial and lateral aspects of prefrontal cortex contribute to the evaluation and selection of different learning algorithms during strategic interaction between the animal and computer opponent. We hypothesize that the lateral prefrontal cortex is involved in computing the integrated values of alternative actions originating from multiple sources and guiding the animal's choice, whereas the medial prefrontal cortex might be more involved in monitoring and resolving the discrepancies of actions favored by different learning algorithms. The results from these experiments will expand our knowledge of the neural mechanisms for complex strategic planning and unify various approaches to study naturalistic behaviors. By taking advantage of recent advances in machine learning and decision neuroscience, proposed studies will elucidate how multiple learning algorithms are simultaneously implemented and coordinated via specific patterns of activity in the prefrontal cortex. The results from these studies will transform the behavioral and analytical paradigms used to study high-order planning and their neural underpinnings in humans and animals.
人类和其他动物可以使用多种学习算法和决策策略来选择自己的行为,例如,可以使用所谓的无模型强化学习算法来选择适应稳定环境的习惯行为,其中每个行为的价值都是递增的。相比之下,大脑如何利用基于模型的强化学习算法来利用动物对其环境的了解来计划连续的动作仍然存在。在此应用中,未探索。具有互补专业知识的 PI 将研究灵长类动物前额叶皮层的不同细分如何在灵长类动物的战略规划过程中评估和仲裁不同的学习算法,使用称为“四连胜”的顺序游戏。通过训练,人类通过逐渐从无模型强化学习转向树搜索形式的基于模型的强化学习来提高他们在这个游戏中的能力。在第一组实验中,我们将训练非人类。灵长类动物玩与计算机对手的四连胜游戏,我们预测策略规划的复杂性和对手违反动物预期的举动将反映在动物的行动速度和瞳孔直径上。接下来,我们将测试如何进行。前额叶皮层的内侧和外侧方面有助于在动物和计算机对手之间的战略交互过程中评估和选择不同的学习算法,我们发现外侧前额叶皮层参与计算来自多个来源的替代动作的综合值。和指导动物的选择,而内侧前额叶皮层可能更多地参与监测和解决不同学习算法所青睐的行为差异。这些实验的结果将扩展我们对复杂战略规划的神经机制的了解,并统一各种研究方法。通过利用机器学习和决策神经科学的最新进展,拟议的研究将阐明如何通过前额皮质的特定活动模式同时实施和协调多种学习算法。这些研究的结果将改变行为和分析。用于研究人类和动物的高阶规划及其神经基础的范式。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unbiased and efficient log-likelihood estimation with inverse binomial sampling.
- DOI:10.1371/journal.pcbi.1008483
- 发表时间:2020-12
- 期刊:
- 影响因子:4.3
- 作者:van Opheusden B;Acerbi L;Ma WJ
- 通讯作者:Ma WJ
Schema-based predictive eye movements support sequential memory encoding.
- DOI:10.7554/elife.82599
- 发表时间:2023-03-27
- 期刊:
- 影响因子:7.7
- 作者:Huang J;Velarde I;Ma WJ;Baldassano C
- 通讯作者:Baldassano C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAEYEOL LEE其他文献
DAEYEOL LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAEYEOL LEE', 18)}}的其他基金
相似国自然基金
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Circuit mechanisms of arbitration between distinct reinforcement learning systems
不同强化学习系统之间的仲裁电路机制
- 批准号:
10608739 - 财政年份:2023
- 资助金额:
$ 36.9万 - 项目类别:
Developing artificial neural network tools for cognitive modeling
开发用于认知建模的人工神经网络工具
- 批准号:
10641215 - 财政年份:2023
- 资助金额:
$ 36.9万 - 项目类别:
Activation of the RXR/PPARγ axis improves long-term outcomes after ischemic stroke in aged mice
RXR/PPARγ 轴的激活可改善老年小鼠缺血性中风后的长期结果
- 批准号:
10364171 - 财政年份:2022
- 资助金额:
$ 36.9万 - 项目类别:
Melanocortin-4 receptor control of striatal-dependent action selection
Melanocortin-4 受体控制纹状体依赖性动作选择
- 批准号:
10590579 - 财政年份:2022
- 资助金额:
$ 36.9万 - 项目类别:
Activation of the RXR/PPARγ axis improves long-term outcomes after ischemic stroke in aged mice
RXR/PPARγ 轴的激活可改善老年小鼠缺血性中风后的长期结果
- 批准号:
10609791 - 财政年份:2022
- 资助金额:
$ 36.9万 - 项目类别: