Explaining the variability in focused ultrasound neuromodulation
解释聚焦超声神经调节的变异性
基本信息
- 批准号:10411455
- 负责人:
- 金额:$ 13.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAddressAnesthesia proceduresBrainBrain regionCellsClinical ResearchCommunitiesDataDeep Brain StimulationDevice or Instrument DevelopmentDoseElectromagneticsElectrophysiology (science)ExhibitsFocused UltrasoundFrequenciesFutureGoalsHeadHippocampus (Brain)ImageInterneuronsInterventionKnowledgeLeadLearningLightLinkMental disordersMissionModelingNatureNeurobiologyNeurologyNeuronsNeurosciencesOperative Surgical ProceduresOrganismOutcomePenetrationPeriodicityPilot ProjectsPopulationPsychiatryPublic HealthPyramidal CellsRattusReportingResearchResolutionRoleSleepSourceSynapsesTechniquesTechnologyTestingTrainingUltrasonicsUnited States National Institutes of HealthUrethaneWorkawakebasecell typecraniumdensitydisabilityexcitatory neuronextracellularhippocampal pyramidal neuroninhibitory neuroninnovationmillimeternervous system disorderneural circuitneuroregulationnoninvasive brain stimulationnovelpostsynapticpredicting responsepreferencerelating to nervous systemresponsesoft tissueultrasound
项目摘要
PROJECT SUMMARY
While conventional electromagnetic approaches to non-invasive brain stimulation are limited in their spatial
resolution and penetration depth, ultrasonic neuromodulation carries the potential of millimeter scale
stimulation of deep brain regions without the need for surgery. Abundant evidence shows that low intensity
focused ultrasound stimulation (FUS) modulates brain activity. However, there have been several reports of
substantial variability in the neural response to ultrasound, with the same "dose" producing disparate effects.
Understanding the source of variability is critical to harnessing the vast potential of FUS in basic neuroscience,
neurology, and psychiatry.
The long term goal of this research is to develop FUS into a personalized, closed loop technology that
can drive brain activity towards desirable states. As the first step towards this goal, the overall objective of this
proposal is to identify the primary source of the variability in neuronal responses to FUS. Based on our group's
preliminary data, our central hypothesis is that response to FUS is greatly influenced by brain state, and that
the outcome of stimulation may be accurately predicted by taking into account the dynamics of neural activity
leading up to stimulation. In the proposed work, we will thoroughly test the notion that FUS is state dependent
by probing the influence of oscillatory dynamics and cell type during both sleep and wake states. Our specific
aims are: (1) Identify the relationship between baseline LFP dynamics and neuronal response during sleep, (2)
Identify the role of cell type in response to FUS during sleep, and (3) Identify the determinants of neuronal
response to FUS in the awake state. We will work with both urethane-anesthetized and head-fixed awake rats,
and will target the hippocampus with FUS while simultaneously capturing electrophysiological activity.
The proposed work is significant because it addresses the central problem with ultrasonic
neuromodulation: how to make its effects more robust and predictable. This research is innovative because it
explicitly links neural dynamics leading up to stimulation with the subsequent response to FUS.
The products of this research have the potential to solve a central problem in FUS: variability of
response. By delineating the conditions that lead to robust effects, this research will bring the FUS field one
step closer to closed-loop capabilities, which clearly necessitate predictable responses. Moreover, we will
obtain a clearer understanding of the mechanism of FUS by considering the neurobiological substrates of the
responsive states identified in this research. For example, if we do confirm a link between FUS response and
baseline gamma, this will shed light on the (gamma generating) circuits that FUS is modulating. This
knowledge will then immediately inform the rapidly growing FUS neuromodulation research community as well
as future pilot studies in neurology and psychiatry.
项目概要
虽然非侵入性脑刺激的传统电磁方法在空间上受到限制
分辨率和穿透深度,超声神经调节具有毫米级潜力
无需手术即可刺激大脑深部区域。大量证据表明,低强度
聚焦超声刺激(FUS)调节大脑活动。然而,已有多起报道称
神经对超声波的反应存在很大差异,相同的“剂量”会产生不同的效果。
了解变异性的来源对于利用 FUS 在基础神经科学中的巨大潜力至关重要,
神经病学和精神病学。
这项研究的长期目标是将 FUS 发展成为一种个性化的闭环技术,
可以驱动大脑活动达到理想的状态。作为实现这一目标的第一步,本次会议的总体目标
提议是确定神经元对 FUS 反应变异的主要来源。根据我们组的
根据初步数据,我们的中心假设是对 FUS 的反应很大程度上受大脑状态的影响,并且
通过考虑神经活动的动态,可以准确预测刺激的结果
导致刺激。在拟议的工作中,我们将彻底测试 FUS 依赖于国家的概念
通过探索睡眠和清醒状态下振荡动力学和细胞类型的影响。我们的具体
目标是:(1) 确定基线 LFP 动态与睡眠期间神经元反应之间的关系,(2)
确定细胞类型在睡眠期间响应 FUS 的作用,以及 (3) 确定神经元的决定因素
清醒状态下对 FUS 的反应。我们将使用聚氨酯麻醉和头部固定的清醒大鼠,
并将用 FUS 瞄准海马体,同时捕获电生理活动。
所提出的工作意义重大,因为它解决了超声波的核心问题
神经调节:如何使其效果更加稳健和可预测。这项研究具有创新性,因为它
明确地将导致刺激的神经动力学与随后对 FUS 的反应联系起来。
这项研究的产品有可能解决 FUS 的一个核心问题:
回复。通过描述产生强大效应的条件,这项研究将使 FUS 领域成为第一个
更接近闭环能力,这显然需要可预测的响应。此外,我们将
通过考虑 FUS 的神经生物学底物,对 FUS 的机制有更清晰的了解
本研究中确定的响应状态。例如,如果我们确实确认 FUS 响应与
基线伽玛,这将揭示 FUS 正在调制的(伽玛生成)电路。这
这些知识也将立即为快速发展的 FUS 神经调节研究界提供信息
作为神经病学和精神病学未来的试点研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacek Dmochowski其他文献
Jacek Dmochowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacek Dmochowski', 18)}}的其他基金
Explaining the variability in focused ultrasound neuromodulation
解释聚焦超声神经调节的变异性
- 批准号:
10683935 - 财政年份:2022
- 资助金额:
$ 13.99万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 13.99万 - 项目类别:
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
- 批准号:
10784983 - 财政年份:2023
- 资助金额:
$ 13.99万 - 项目类别:
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 13.99万 - 项目类别:
Explaining the variability in focused ultrasound neuromodulation
解释聚焦超声神经调节的变异性
- 批准号:
10683935 - 财政年份:2022
- 资助金额:
$ 13.99万 - 项目类别: