Atomic-level characterization of self-regulatory mechanisms in large multidomain enzymes
大型多域酶自我调节机制的原子水平表征
基本信息
- 批准号:10408689
- 负责人:
- 金额:$ 36.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AntibioticsBacterial InfectionsBindingBiochemicalBiological ProcessBiologyBiophysicsCell physiologyCommunicationComplexCouplingDevelopmentEnzymesFutureGene ExpressionHumanMalignant NeoplasmsMediatingMessenger RNAMetabolismMicrobial BiofilmsModificationMolecular ConformationMolecular WeightPhosphorylationPhosphotransferasesPlayProtein DynamicsProteinsRNARegulationResearchResolutionRoleSeriesSourceStimulusSystemVirulencebacterial metabolismbasecofactorcombatdemethylationdimerenzyme structureflexibilityhuman diseaseinsightinterestlipid biosynthesisnanomachinenovelnovel strategiesnovel therapeutic interventionobesity treatmentprogramsprotein protein interactionresponsesmall moleculetumor progressiontumorigenesis
项目摘要
PROJECT SUMMARY/ABSTRACT
Enzymes are remarkable nanomachines that play a myriad of essential functions in cellular metabolism.
Modulation of enzyme structure and flexibility by cofactor/substrate binding provides an important source of
regulation of enzyme function, yet our understanding of the fundamental mechanisms coupling protein
dynamics to enzymatic activity is still largely incomplete. Indeed, while our appreciation of how conformational
dynamics mediate biological function is predominantly based on structural studies on low-complexity, low-
molecular weight systems, enzymes are typically oligomeric, multidomain proteins whose biological function
depends on an intricate coupling among intradomain, interdomain, and intersubunit conformational equilibria.
Without a comprehensive, atomic-resolution understanding of conformational dynamics-mediated, self-
regulatory mechanisms in high-complexity, high-molecular weight enzymes, our ability to understand and
exploit ubiquitous phenomena in biology, such as allosterism and cooperativity, will continue to lag.
Here, we will use NMR combined with other biophysical and biochemical approaches to reveal how the
complex interplay between cofactor/substrate binding and conformational dynamics regulates the activity of
high molecular weight enzymes that are essential for human and bacterial metabolism. The systems of interest
in this proposal are Enzyme I (EI) of the bacterial phosphotransferase system (PTS), and the human RNA
demethylases FTO and Alkbh5. EI is a 128 kDa dimeric enzyme whose activity depends on the synergistic
action of four conformational equilibria that results in a series of large intradomain, interdomain, and
intersubunit structural rearrangements modulated by substrate binding. The PTS is a central regulator of
bacterial metabolism that controls multiple cellular functions, including virulence and biofilm formation, through
phosphorylation-dependent protein-protein interactions. Therefore, understanding EI activity at atomic level will
illuminate the fundamental mechanisms governing long-range interdomain communication in proteins, and may
suggest new therapeutic strategies to combat bacterial infections. The second part of the present proposal
focuses on enzymes that are capable of catalyzing oxidative demethylation of the N6-methyladenosine (m6A).
m6A is the most abundant modification in eukaryotic mRNA. Dynamic regulation of the m6A modification plays
an important role in gene expression, cellular response to external stimuli, oncogenesis, adipogenesis and in
development of other human diseases. We will investigate the mechanisms that regulate the function of the
human RNA demethylases FTO and Alkbh5 with atomic resolution. Our results will guide new strategies to
achieve selective inhibition of FTO and Alkbh5 to control gene expression and to contrast progression of
cancer. In summary, my research program will elucidate the coupling between large scale conformational
changes and function in two distinct classes of high molecular weight multidomain enzymes, providing new
insights for future therapies for obesity and cancer as well as novel antibiotic targets.
项目摘要/摘要
酶是显着的纳米机器,在细胞代谢中起着无数的基本功能。
辅助因子/底物结合对酶结构和柔韧性的调节提供了重要的来源
调节酶功能,但是我们对基本机制耦合蛋白的理解
酶活性的动力学基本上是不完整的。确实,尽管我们对如何构象的欣赏
动力学介导生物学功能主要基于低复杂性,低 -
分子量体重系统,酶通常是寡聚,多域蛋白的生物学功能
取决于内域,域间和亚基间构象平衡之间的复杂耦合。
没有对构象动力学介导的自我介导的全面,原子分辨率的理解
高复杂性,高分子重量酶的调节机制,我们理解和
生物学中的普遍现象(例如变构和合作)将继续落后。
在这里,我们将使用NMR与其他生物物理和生化方法结合在一起,以揭示如何揭示如何
辅因子/底物结合和构象动力学之间的复杂相互作用调节
对人和细菌代谢必不可少的高分子量酶。感兴趣的系统
在该提案中是细菌磷酸转移酶系统(PTS)的酶I(EI)和人RNA
脱甲基酶FTO和ALKBH5。 EI是一种128 kDa二聚体酶,其活性取决于协同作用
四个构象平衡的作用,导致一系列大型内域,室内和
底物结合调节的亚基间结构重排。 PTS是
通过控制多种细胞功能的细菌代谢,包括毒力和生物膜形成,
磷酸化依赖性蛋白质 - 蛋白质相互作用。因此,了解原子水平的EI活动将
阐明管理蛋白质长距离交流的基本机制,可能
提出新的治疗策略来打击细菌感染。本提案的第二部分
侧重于能够催化N6-甲基二糖苷(M6A)的氧化脱甲基化的酶。
M6A是真核mRNA中最丰富的修饰。 M6A修饰戏剧的动态调节
在基因表达,对外部刺激的细胞反应,肿瘤发生,成生成和中的重要作用
其他人类疾病的发展。我们将研究调节功能的机制
具有原子分辨率的人RNA去甲基酶FTO和ALKBH5。我们的结果将指导新策略
实现对FTO和ALKBH5的选择性抑制以控制基因表达和对比的进展
癌症。总而言之,我的研究计划将阐明大规模构象之间的耦合
两种不同类别的高分子重量多域酶的变化和功能,提供了新的
对肥胖和癌症的未来疗法以及新型抗生素靶标的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vincenzo Venditti其他文献
Vincenzo Venditti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vincenzo Venditti', 18)}}的其他基金
Atomic-level characterization of self-regulatory mechanisms in large multidomain enzymes
大型多域酶自我调节机制的原子水平表征
- 批准号:
10166882 - 财政年份:2019
- 资助金额:
$ 36.78万 - 项目类别:
Atomic-level characterization of self-regulatory mechanisms in large multidomain enzymes
大型多域酶自我调节机制的原子水平表征
- 批准号:
9797195 - 财政年份:2019
- 资助金额:
$ 36.78万 - 项目类别:
Atomic-level characterization of self-regulatory mechanisms in large multidomain enzymes
大型多域酶自我调节机制的原子水平表征
- 批准号:
10622947 - 财政年份:2019
- 资助金额:
$ 36.78万 - 项目类别:
相似国自然基金
基于棒状植物病毒的多糖结合疫苗用于预防细菌/真菌感染研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于棒状植物病毒的多糖结合疫苗用于预防细菌/真菌感染研究
- 批准号:52273160
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
RNA结合蛋白LIN28A介导幽门螺杆菌感染恶性转化的调控机制
- 批准号:81571960
- 批准年份:2015
- 资助金额:70.0 万元
- 项目类别:面上项目
表皮葡萄球菌agrC特异结合多肽在胸心外科生物材料植入感染中的作用及机制研究
- 批准号:81460278
- 批准年份:2014
- 资助金额:47.0 万元
- 项目类别:地区科学基金项目
虾蟹潜在病原受体gC1qR同源物抗WSSV感染及细菌结合功能研究
- 批准号:31101920
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 36.78万 - 项目类别:
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
- 批准号:
10639904 - 财政年份:2023
- 资助金额:
$ 36.78万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 36.78万 - 项目类别:
NLRP10 Inflamasome in Gram-positive Sepsis
革兰氏阳性脓毒症中的 NLRP10 炎性体
- 批准号:
10680214 - 财政年份:2023
- 资助金额:
$ 36.78万 - 项目类别:
Harnessing iron acquisition to hinder enterobacterial pathogenesis
利用铁的获取来阻碍肠细菌的发病机制
- 批准号:
10651432 - 财政年份:2023
- 资助金额:
$ 36.78万 - 项目类别: