High-Risk Clones of Pseudomonas aeruginosa
铜绿假单胞菌的高风险克隆
基本信息
- 批准号:10408175
- 负责人:
- 金额:$ 19.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-20 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAllelesAntibiotic ResistanceAntibioticsCenters for Disease Control and Prevention (U.S.)CollectionCountryDNADisease OutbreaksEnvironmentEpidemicEpidemiologyGastrointestinal tract structureGenotypeGeographic LocationsHospitalsInfectionInfection Control PractitionersInstitutionInterventionKnowledgeLinkMedicalMethodsMobile Genetic ElementsModernizationMolecularMulti-Drug ResistanceMutationNosocomial InfectionsOutcomePatientsPhenotypePopulationPropertyPseudomonas aeruginosaPseudomonas aeruginosa infectionReportingStructureTestingTherapeutic Interventionantibiotic resistant infectionsburden of illnessexperimental studygenome sequencinggenomic locusgut colonizationhigh riskhigh risk populationinsightmouse modelmultidrug-resistant Pseudomonas aeruginosanovel therapeuticspathogenic bacteriapreventpriority pathogenresistance alleleresistance genetargeted treatmentwhole genome
项目摘要
Project Summary
Outbreaks of multidrug-resistant (MDR) Pseudomonas aeruginosa infections within medical institutions
have been commonly reported for many years. We now know that most of these outbreaks are caused by a
small group of widely dispersed MDR P. aeruginosa lineages, which are have been referred to as “high-risk
clones” (HRCs). HRCs are highly antibiotic resistant PA lineages that have spread across countries and even
continents to cause large numbers of infections. They emerged in the 1980s and 1990s and then rapidly
disseminated. The best characterized HRCs are the multilocus sequence types (MLSTs) ST235, ST175, and
ST111. HRCs are problematic for two reasons: (1) Because they readily spread within and between hospitals,
they cause a disproportionate number of infections. (2) They are highly resistant to antibiotics. In fact, it
appears that most MDR PA strains worldwide belong to these few HRC lineages. As expected, HRCs have
also been linked to particularly poor outcomes. What has allowed HRCs to spread so widely and to become so
resistant to antibiotics while the vast majority of P. aeruginosa STs are cultured only once and are antibiotic
susceptible? Relatively few experiments have been performed to address this important question, but
speculation has focused on two possibilities: (1) HRCs more effectively colonize the gastrointestinal (GI) tract
than other P. aeruginosa strains. The GI tracts of patients are a major reservoir for P. aeruginosa in the
hospital setting, and strains of P. aeruginosa capable of more effectively colonizing this niche would have a
considerable advantage in persisting and spreading to new patients within and between institutions. (2) HRCs
have properties that allow them to more efficiently acquire antibiotic resistance genes and alleles than
conventional P. aeruginosa strains. Populations of HRCs harbor an impressive array of mobile genetic
elements and chromosomal alleles that encode antibiotic resistance, suggesting that they are more amendable
to acquiring exogenous DNA and evolving mutations than conventional strains. We hypothesize that HRCs
are better able to colonize the GI tract and better able to acquire antibiotic-resistance determinants
than conventional P. aeruginosa strains. To test these hypotheses, we will perform the following Specific
Aims: (1) Use a mouse model to determine whether HRCs colonize the GI tract better than conventional P.
aeruginosa strains. (2) Determine whether HRCs have properties that allow them to more readily become
resistant to antibiotics. (3) Identify genetic loci that distinguish HRCs from conventional strains. Completion of
these aims will provide insights into the mechanisms by which HRCs persist in the hospital environment and
acquire MDR phenotypes. These insights in turn will highlight vulnerabilities that can be targeted by therapeutic
interventions that prevent the spread and limit the antibiotic resistance of HRCs. Such interventions would
impact not only some of the most common P. aeruginosa infections but also those that are the most difficult to
treat.
项目概要
医疗机构内多重耐药(MDR)铜绿假单胞菌感染暴发
我们现在知道,大多数疫情都是由以下原因引起的。
一小群广泛分布的耐多药铜绿假单胞菌谱系,被称为“高风险”
克隆”(HRC)是高度抗生素耐药的 PA 谱系,已遍布各个国家甚至各个国家。
它们在 20 世纪 80 年代和 90 年代出现,然后迅速蔓延。
传播性最好的 HRC 是多位点序列类型 (MLST) ST235、ST175 和
ST111.HRC 存在问题的原因有两个:(1) 因为它们很容易在医院内部和医院之间传播,
(2) 事实上,它们对抗生素具有很强的耐药性。
看来全世界大多数 MDR PA 菌株都属于这几个 HRC 谱系,正如预期的那样,HRC 具有。
是什么导致人权委员会如此广泛地传播并变得如此之大。
对抗生素有抗药性,而绝大多数铜绿假单胞菌 ST 仅培养一次并且是抗生素
敏感性?已经进行了相对较少的实验来解决这个重要问题,但是
推测集中在两种可能性上:(1) HRC 更有效地定植于胃肠道 (GI)
与其他铜绿假单胞菌菌株相比,患者的胃肠道是铜绿假单胞菌的主要储存库。
医院环境中,能够更有效地定植该生态位的铜绿假单胞菌菌株将具有
(2) HRC
具有使它们比抗生素抗性基因和等位基因更有效地获得的特性
传统的铜绿假单胞菌菌株 HRC 群体拥有一系列令人印象深刻的可移动遗传。
编码抗生素耐药性的元件和染色体等位基因,表明它们更容易修正
比传统菌株获得外源 DNA 和进化突变。
能够更好地在胃肠道定殖并更好地获得抗生素耐药性决定因素
为了检验这些假设,我们将执行以下具体操作。
目的:(1) 使用小鼠模型来确定 HRC 是否比传统的 P.
(2) 确定 HRC 是否具有使它们更容易变成铜绿假单胞菌的特性。
(3) 识别 HRC 与传统菌株的区别基因位点。
这些目标将深入了解 HRC 在医院环境中持续存在的机制,
获得 MDR 表型反过来将突出可以通过治疗来靶向的脆弱性。
防止 HRC 传播并限制抗生素耐药性的干预措施。
不仅影响一些最常见的铜绿假单胞菌感染,还影响那些最难感染的铜绿假单胞菌感染。
对待。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALAN R HAUSER其他文献
ALAN R HAUSER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALAN R HAUSER', 18)}}的其他基金
Assessing SARS-CoV-2 Variant Evolution in Patients
评估患者中的 SARS-CoV-2 变异进化
- 批准号:
10426993 - 财政年份:2021
- 资助金额:
$ 19.58万 - 项目类别:
Dynamics of Pseudomonas aeruginosa During Bacteremia
菌血症期间铜绿假单胞菌的动态
- 批准号:
10222524 - 财政年份:2020
- 资助金额:
$ 19.58万 - 项目类别:
Dynamics of Pseudomonas aeruginosa During Bacteremia
菌血症期间铜绿假单胞菌的动态
- 批准号:
10042352 - 财政年份:2020
- 资助金额:
$ 19.58万 - 项目类别:
Systems Biology Modeling of Severe Hospital-Acquired Pneumonia
严重医院获得性肺炎的系统生物学模型
- 批准号:
10551467 - 财政年份:2018
- 资助金额:
$ 19.58万 - 项目类别:
Pathogen and Microbiome Temporal Changes During Resolution of HAP
HAP 消退过程中病原体和微生物组的时间变化
- 批准号:
10097985 - 财政年份:2018
- 资助金额:
$ 19.58万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等位基因不平衡表达对采后香蕉果实后熟与品质形成的影响
- 批准号:31972471
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
高温影响水稻不同Wx等位基因表达及直链淀粉含量的分子机制研究
- 批准号:31500972
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 19.58万 - 项目类别: