Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
基本信息
- 批准号:10399478
- 负责人:
- 金额:$ 49.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-06 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinityAlgorithmsAntibodiesArtificial IntelligenceBindingBiochemicalBiologicalChemical StructureChemistryClinical TrialsComplexDiagnosticDiseaseDisease modelDrug InteractionsDrug TargetingEffectivenessEpigenetic ProcessExplosionFree EnergyGeneticGeometryHumanImmunotherapyIndividualKnowledgeLigandsModelingMolecularNetwork-basedPharmaceutical PreparationsPharmacotherapyPhylogenetic AnalysisProtein FamilyProteinsRiskSafetySpecificityStructureTherapeuticTimeTreesWorkbasecomorbiditycostcryptic proteindeep learningdrug candidatedrug discoveryexomegain of functionimprovedinsightnovelpre-clinicalprecision medicineprotein complexprotein structurescreeningside effectsmall moleculesuccesstoolvirtual
项目摘要
PROJECT SUMMARY
Although the past two decades witnessed the large-scale analyses of cellular components, e.g. exomes, their
impact on drug discovery and precision medicine has been modest. For example, 6/7 drug candidates failed
safety and 3/4 failed efficacy in recent FDA clinical trials. These unsolved, but related issues, safety and efficacy,
reflect significant gaps in understanding of the triangular interrelationship between diseases, molecular function,
and drug treatments. A key conceptual limitation of contemporary drug discovery is the often implicitly assumed
single drug for a single protein target disease model. In reality, most diseases are caused by multiple
malfunctioning molecules. Whether it be disease treatment or precision medicine diagnostics, there is often an
inability to identify disease-associated mode of action (MOA) proteins. To begin to address these issues, in the
current MIRA proposal, we developed a promising protein structure and network-based Artificial Intelligence (AI)
approach, MEDICASCY, to predict disease-associated MOA proteins, drug indications, side effects and efficacy;
however, much more needs to be done. Here, we propose to build on our successes and develop an integrated
AI-based approach, MEDICASCY-X, that addresses the following: The first step in determining a drug’s MOA
and off-target interactions is to identity its protein targets. This requires the structures of all human proteins and
their complexes. While we predicted suitable models for at least one domain in 97% of human proteins, using
deep learning, we will predict the structures of the missing domains, domain-domain orientations and protein-
protein complexes. We will extend small molecule virtual ligand screening (VLS) to predict binding affinities
based on the insight that interacting ring-protein subpocket geometries and chemistry are conserved across
protein families, are often privileged chemical structures and are likely low free energy complexes. Cryptic protein
pockets, recently recognized as important drug targets, will be predicted and included in our VLS approach.
Antibody-based immunotherapies are powerful but have similar safety and efficacy issues as small-molecules;
thus, their safety and efficacy will be predicted by MEDICASCY-X. While MEDICASCY works on an “averaged
human”, MEDICASCY-X will consider individual genetic and epigenetic profiles to make it a true precision
medicine tool. We will predict which MOA proteins should be targeted and if a protein’s MOA is due to a loss or
gain of function. The same framework will predict synergistic drug-drug interactions. Another way to prioritize
MOA proteins is by disease comorbidity: proteins occurring in multiple diseases are likely important. If disease
comorbidity can be predicted, we will construct the “Phylogenetic” Tree(s) of Diseases that would facilitate a
deeper understanding of disease interrelationships. As proof of principle of the effectiveness of the algorithms
being developed, novel preclinical treatments for a variety of intractable diseases will be developed. Thus, this
project could enhance the success rates of drug discovery and precision medicine while reducing time and cost.
项目摘要
尽管过去二十年来见证了对细胞成分的大规模分析,例如exomes,他们的
对药物发现和精确药物的影响很小。例如,6/7候选毒品失败
在最近的FDA临床试验中,安全性和3/4的有效性失败。这些未解决但相关的问题,安全性和有效性,
反映了理解疾病之间三角相互关系的显着差距,分子功能,
和药物治疗。当代药物发现的关键概念限制是经常被隐式假定的
单蛋白靶病模型的单一药物。实际上,大多数疾病是由多种疾病引起的
分子故障。无论是疾病治疗还是精确医学诊断,通常都有
无法鉴定与疾病相关的作用模式(MOA)蛋白。为了开始解决这些问题
当前的Mira提案,我们开发了一种有希望的蛋白质结构和基于网络的人工智能(AI)
方法,医学,以预测与疾病相关的MOA蛋白,药物适应症,副作用和有效性;
但是,需要做更多的事情。在这里,我们建议以我们的成功为基础,并建立一个综合的
基于AI的方法,Medicascy-X,涉及以下内容:确定药物MOA的第一步
脱靶相互作用是识别其蛋白质靶标。这需要所有人类蛋白质的结构,
他们的综合体。虽然我们预测了97%的人类蛋白质中至少一个域的合适模型,但使用
深度学习,我们将预测缺失域,域域取向和蛋白质的结构
蛋白质复合物。我们将延长小分子虚拟配体筛选(VLS)以预测结合亲和力
基于以下洞察力,即相互作用的环蛋白子口几何形状和化学是在跨越
蛋白质家族通常是特权化学结构,可能是低自由能配合物。隐秘蛋白质
口袋最近被认为是重要的药物靶标,将被预测并包括在我们的VLS方法中。
基于抗体的免疫疗法功能强大,但具有与小分子相似的安全性和效率问题。
这就是他们的安全性和效率将由Medicascy-X预测。而Medicascy在“平均
人类”,Medicascy-X将考虑个体的遗传和表观遗传学特征,以使其成为真正的精确度
药品工具。我们将预测应靶向哪种MOA蛋白,以及蛋白质的MOA是否是由于损失或
功能增益。同一框架将预测协同的药物相互作用。优先级的另一种方法
MOA蛋白质是通过疾病合并症:多种疾病中发生的蛋白质可能很重要。如果疾病
可以预测合并症,我们将构造疾病的“系统发育”树,以促进
对疾病相互关系的更深入了解。作为算法有效性原理的证明
随着开发,将开发针对各种棘手疾病的新型临床前治疗。那,这个
项目可以提高药物发现和精确药物的成功率,同时减少时间和成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY SKOLNICK其他文献
JEFFREY SKOLNICK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY SKOLNICK', 18)}}的其他基金
Purchase of a GPU cluster for deep learning applications in protein-protein interaction and supercomplex prediction and biochemical literature annotation.
购买 GPU 集群,用于蛋白质-蛋白质相互作用、超复杂预测和生化文献注释中的深度学习应用。
- 批准号:
10797550 - 财政年份:2016
- 资助金额:
$ 49.1万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
9926899 - 财政年份:2016
- 资助金额:
$ 49.1万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
9270553 - 财政年份:2016
- 资助金额:
$ 49.1万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
10613959 - 财政年份:2016
- 资助金额:
$ 49.1万 - 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
- 批准号:
8474727 - 财政年份:2012
- 资助金额:
$ 49.1万 - 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
- 批准号:
8285272 - 财政年份:2012
- 资助金额:
$ 49.1万 - 项目类别:
MULTIRESOLUTION SAMPLING METHODS FOR PROTEIN & PEPTIDE CONFORMATIONAL SPACE
蛋白质多分辨率采样方法
- 批准号:
7957342 - 财政年份:2009
- 资助金额:
$ 49.1万 - 项目类别:
REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
- 批准号:
7723173 - 财政年份:2008
- 资助金额:
$ 49.1万 - 项目类别:
REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
- 批准号:
7601397 - 财政年份:2007
- 资助金额:
$ 49.1万 - 项目类别:
MULTIRESOLUTION SAMPLING METHODS FOR PROTEIN & PEPTIDE CONFORMATIONAL SPACE
蛋白质多分辨率采样方法
- 批准号:
7602259 - 财政年份:2007
- 资助金额:
$ 49.1万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 49.1万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 49.1万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 49.1万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 49.1万 - 项目类别:
De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
- 批准号:
10836196 - 财政年份:2023
- 资助金额:
$ 49.1万 - 项目类别: