Understanding breast cancer progression as a defect in the mechanics of tissue self-organization
将乳腺癌进展理解为组织自组织机制的缺陷
基本信息
- 批准号:10395995
- 负责人:
- 金额:$ 56.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AKT inhibitionAdhesionsArchitectureBasement membraneBinding SitesBioinformaticsBiological AssayBreastBreast Cancer CellBreast Cancer PreventionBreast Epithelial CellsCell Adhesion MoleculesCell LineageCellsChemicalsClinicalComplexDangerousnessDefectDiseaseDisease MarkerDisease ProgressionDrug TargetingDuct (organ) structureEntropyEpithelialEpithelial CellsExtracellular MatrixExtracellular Matrix ProteinsGenesGeneticGenetic TranscriptionGenetically Engineered MouseGoalsHumanImageIn SituIn VitroInvadedLeadLobuleMalignant NeoplasmsMammaplastyMammary Gland ParenchymaMammary glandMass Spectrum AnalysisMeasurementMeasuresMechanicsMediatingMolecularMutationMyoepithelialNoninfiltrating Intraductal CarcinomaOperative Surgical ProceduresOrganoidsPIK3CA genePathway interactionsPatientsPenetrationPeptide HydrolasesPhenotypePolycombPositioning AttributeProbabilityProliferatingPropertyPublishingRiskSignal TransductionStatistical MechanicsStructureSystemTemperatureTestingTherapeuticTimeTissue EngineeringTissue ModelTissuesWestern BlottingWomanbreast cancer progressioncell motilitycell typecellular engineeringdrug developmentexperimental studyin vivoinfiltrating duct carcinomainhibitorinnovationinterfaciallensmalignant breast neoplasmmammary epitheliummathematical modelmechanical energymouse modelneoplastic cellovertreatmentpredictive modelingpreventprogramsreconstitutionself organizationsingle-cell RNA sequencingsmall hairpin RNAthree dimensional cell culturetumortumor progression
项目摘要
ABSTRACT
A progressive breakdown in the bilayered structure of the mammary gland is the hallmark of all breast cancers,
but the structural change that occurs between ductal carcinoma in situ (DCIS) and invasive ductal carcinoma
(IDC) is of particular importance because it represents a major inflection point in risk for patients. Breast cancers
originate in the inner luminal layer of the mammary epithelium, where transformed luminal epithelial cells (LEP)
proliferate to fill the ducts and lobules in DCIS. Surprisingly, LEP in DCIS have acquired all the necessary
genetic aberrations to invade, but remain constrained within the tissue by an intact outer myoepithelial (MEP)
layer—a group of cells that forms a dynamic barrier blocking access of the in situ tumor to the basement
membrane (BM, the specialized extracellular matrix (ECM) that surrounds the mammary epithelium). Thus, we
propose that translocation of transformed LEP past the MEP layer, and not genetic mutations, is a key rate-
limiting step in progression to IDC. Here, we aim to identify the physical and molecular changes that must occur
in LEP to facilitate this structural transition. We approach this challenge through the lens of mammary epithelial
self-organization. We previously demonstrated that normal human LEP and MEP can self-organize in vitro, and
that the capacity of MEP to exclude LEP from the BM is determined by hard-wired and lineage-specific interfacial
tensions at each cell-cell and cell-ECM interface. We showed using experiments and mathematical modeling
that the LEP-ECM interface is highly unfavorable energetically compared to the MEP-ECM interface, which
prevents LEP from positioning themselves next to the BM. We hypothesize the existence of a rate-limiting and
high-energy structural intermediate during the progression of DCIS to IDC, where LEP translocate into the MEP
layer, next to the BM. We propose a statistical mechanical framework for understanding how perturbations to
the interfacial properties and dynamics of tumor cells facilitate the formation of this intermediate. Specifically, we
predict that changes to the LEP-ECM interfacial energy are a critical physical change necessary to promote
basal translocation of transformed LEP. Preliminary studies support this hypothesis: we found that a frequently
dysregulated gene—PIK3CA—disrupts self-organization when activated in LEP by rendering the LEP-ECM
interface more energetically favorable. In this proposal, we will determine whether this and other physical
changes to LEP are necessary for their basal translocation, and identify the molecular changes downstream of
PIK3CA that give rise to these physical changes. We will test our hypothesis using complementary in vitro and
in vivo experimental systems: using organoids reconstituted from human reduction mammoplasty tissues and
genetically engineered mouse models. Our long-term goal is to reveal the changes that promote and inhibit
progression from DCIS to IDC. Better physical and molecular predictors of progression would benefit DCIS
patients who would otherwise be over-treated, as only a third of DCIS cases progress to IDC. Further, blocking
LEP translocation would represent a therapeutic strategy to prevent breast cancer progression.
抽象的
乳腺的双层结构的逐渐崩溃是所有乳腺癌的标志,
但是,导管癌(DCIS)和浸润性导管癌之间发生的结构变化
(IDC)特别重要,因为它代表了患者风险的主要影响点。乳腺癌
起源于乳腺上皮的内部腔内层,其中转化的腔上皮细胞(LEP)
扩散以填充DCIS中的管道和小叶。令人惊讶的是,DCI中的LEP已获得了所有必要的
遗传畸变要入侵,但通过完整的外肌上皮(MEP)仍在组织中限制
层 - 一组单元,形成了动态屏障阻断原位肿瘤对地下室的访问
膜(BM,围绕乳腺上皮的专门细胞外基质(ECM))。
提议将转化的LEP易位经过MEP层而不是遗传突变是一个关键率 -
限制进步到IDC的步骤。在这里,我们旨在确定必须发生的身体和分子变化
在LEP中促进这种结构过渡。我们通过乳腺上皮的镜头应对这一挑战
自组织。我们以前证明了正常的人LEP和MEP可以在体外自组织,并且
MEP将LEP排除在BM之外的能力由硬线和谱系特异性界面确定
每个细胞细胞和细胞ECM接口处的紧张局势。我们展示了使用实验和数学建模
与MEP-ECM接口相比,LEP-ECM接口高度不利
防止LEP将自己定位在BM旁边。我们假设存在限制率的存在
在DCI到IDC的进展过程中,高能结构中间体,LEP转移到MEP中
层,在BM旁边。我们提出了一个统计机械框架,以了解如何扰动
肿瘤细胞的界面特性和动力学促进了该中间体的形成。具体来说,我们
预测对LEP-ECM界面能量的变化是促进的重要物理变化
转化的LEP的基本易位。初步研究支持这一假设:我们发现
通过呈现LEP-ECM激活LEP,在LEP中激活时,基因失调 - PIK3CA - 散发自组织
接口更有效地有利。在此提案中,我们将确定是否和其他物理
LEP的变化对于它们的基本易位是必需的,并确定下游的分子变化
PIK3CA引起了这些身体变化。我们将使用体外完整性测试我们的假设
体内实验系统:使用人类还原乳腺成形术组织和
基因工程的鼠标模型。我们的长期目标是揭示促进和抑制的变化
从DCI到IDC的发展。更好的身体和分子预测指标将使DCIS受益
否则会过度治疗的患者,因为只有三分之一的DCIS病例发展为IDC。此外,阻止
LEP易位将代表一种预防乳腺癌进展的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREI GOGA其他文献
ANDREI GOGA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREI GOGA', 18)}}的其他基金
Understanding CDK1 Function and Cancer Vulnerabilities
了解 CDK1 功能和癌症脆弱性
- 批准号:
10736617 - 财政年份:2023
- 资助金额:
$ 56.62万 - 项目类别:
Understanding breast cancer progression as a defect in the mechanics of tissue self-organization
将乳腺癌进展理解为组织自组织机制的缺陷
- 批准号:
10613917 - 财政年份:2020
- 资助金额:
$ 56.62万 - 项目类别:
Uncovering Mechanisms of Regulation and Dependency on Fatty Acid Oxidation in MYC-Driven Tumors
揭示 MYC 驱动肿瘤中脂肪酸氧化的调节和依赖性机制
- 批准号:
10194413 - 财政年份:2018
- 资助金额:
$ 56.62万 - 项目类别:
Uncovering Mechanisms of Regulation and Dependency on Fatty Acid Oxidation in MYC-Driven Tumors
揭示 MYC 驱动肿瘤中脂肪酸氧化的调节和依赖性机制
- 批准号:
10436804 - 财政年份:2018
- 资助金额:
$ 56.62万 - 项目类别:
In Vivo Metabolic Catastrophe Is Induced By Acute Oncogene Inhibition (PQ #22)
体内代谢灾难是由急性癌基因抑制(PQ
- 批准号:
8676483 - 财政年份:2012
- 资助金额:
$ 56.62万 - 项目类别:
In Vivo Metabolic Catastrophe Is Induced By Acute Oncogene Inhibition (PQ #22)
体内代谢灾难是由急性癌基因抑制(PQ
- 批准号:
8384577 - 财政年份:2012
- 资助金额:
$ 56.62万 - 项目类别:
In Vivo Metabolic Catastrophe Is Induced By Acute Oncogene Inhibition (PQ #22)
体内代谢灾难是由急性癌基因抑制(PQ
- 批准号:
8513950 - 财政年份:2012
- 资助金额:
$ 56.62万 - 项目类别:
Targeting the MYC Oncogene with CDK Inhibitors
使用 CDK 抑制剂靶向 MYC 癌基因
- 批准号:
8641666 - 财政年份:2010
- 资助金额:
$ 56.62万 - 项目类别:
Targeting the MYC Oncogene with CDK Inhibitors
使用 CDK 抑制剂靶向 MYC 癌基因
- 批准号:
7890072 - 财政年份:2010
- 资助金额:
$ 56.62万 - 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
膜仿生载基因纳米球体内重编程巨噬细胞抑制肌腱粘连的机制研究
- 批准号:82372389
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Understanding breast cancer progression as a defect in the mechanics of tissue self-organization
将乳腺癌进展理解为组织自组织机制的缺陷
- 批准号:
10613917 - 财政年份:2020
- 资助金额:
$ 56.62万 - 项目类别:
AKT-Vimentin interaction; a potential role in soft tissue sarcoma progression and
AKT-波形蛋白相互作用;
- 批准号:
8249120 - 财政年份:2009
- 资助金额:
$ 56.62万 - 项目类别:
AKT-Vimentin interaction; a potential role in soft tissue sarcoma progression and
AKT-波形蛋白相互作用;
- 批准号:
8056606 - 财政年份:2009
- 资助金额:
$ 56.62万 - 项目类别:
AKT-Vimentin interaction; a potential role in soft tissue sarcoma progression and
AKT-波形蛋白相互作用;
- 批准号:
8458614 - 财政年份:2009
- 资助金额:
$ 56.62万 - 项目类别:
AKT-Vimentin interaction; a potential role in soft tissue sarcoma progression and
AKT-波形蛋白相互作用;
- 批准号:
7739895 - 财政年份:2009
- 资助金额:
$ 56.62万 - 项目类别: