Activity-dependent energy homeostasis at the presynaptic terminal
突触前末梢活动依赖性能量稳态
基本信息
- 批准号:10394964
- 负责人:
- 金额:$ 53.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:ATP Synthesis PathwayAcuteAddressAffectAgingAlzheimer like pathologyAlzheimer&aposs DiseaseAlzheimer&aposs disease brainArchitectureAuditoryBioenergeticsBiological AssayBrainBrain StemBuffersCellsCellular StressChronicCreatine KinaseDefectDiseaseDisease ProgressionElectric StimulationElectrophysiology (science)Energy SupplyExcitatory SynapseFrequenciesFunctional ImagingFunctional disorderGenerationsGlycolysisGoalsHomeostasisHuntington DiseaseImageImpairmentInterventionKnowledgeMeasuresMediatingMetabolicMitochondriaMonitorMotivationMusNatural regenerationNeurodegenerative DisordersNeuronsNormal tissue morphologyOutcomeParkinson DiseasePathologicPathologyPathway interactionsPhasePhysiologicalPopulationPositioning AttributePreparationPresynaptic TerminalsProductionRecyclingResearchResolutionRespirationRodentRoleRouteShapesSynapsesSynaptic TransmissionSynaptic plasticitySystemTechniquesTestingTherapeuticTimeTissuesWhole-Cell RecordingsWorkage relatedbasecalcium uniporterfunctional restorationhealthspanimaging probeinsightmitochondrial dysfunctionnervous system disorderneuron lossneurotransmissionnormal agingnovel strategiespresynapticrepairedresponsesynaptic functiontransmission processuptake
项目摘要
This work is relevant to both normal aging and pathologies like Alzheimer’s disease, where brain function is
impaired due to defective mitochondrial respiration and loss of cellular energy. The long-term goal of this project
is to ameliorate neurotransmission defects due to mitochondrial dysfunction, as a way to stop disease
progression to later degenerative stages, increasing healthspan in populations increasingly subject to age-
related neurological diseases. Fundamental mechanisms underlying the bioenergetics of synaptic function in
normal tissue must be resolved first, to cure these diseases. Our goals in this project are two-fold. First, the
extent to which mitochondrial Ca2+ uptake facilitates ATP production in response to activity will be defined.
Second, the extent that compensatory strategies are utilized at the presynaptic terminal to delay energy loss will
be determined when mitochondrial function is impaired. Results from this project will provide clear mechanistic
insight into the Ca2+-buffering and ATP-producing roles of synaptic mitochondria, an essential first step that is
currently unclear.
The PI has developed several novel approaches that allow us to dissect the bioenergetic strategies used to
support transmission at the mouse calyx of Held, using a combination of electrophysiology, Ca2+ imaging, and
ATP imaging. In contrast to small conventional synapses, giant ‘calyx-like’ excitatory synapses in the rodent
auditory brainstem allow direct whole-cell recordings from the presynaptic terminal. This experimental
accessibility permits manipulation of presynaptic [Ca2+] and [ATP], making it possible to dissect the
interdependent Ca2+-buffering and energy-supporting roles of synaptic mitochondria. In the first Specific Aim, the
extent that the mitochondrial calcium uniporter (MCU) facilitates mitochondrial respiration and ATP homeostasis
following synaptic activity will be determined. The second Specific Aim will dissect the importance of
mitochondrial Ca2+ uptake versus facilitated respiration on synaptic transmission and presynaptic short-term
plasticity. Namely, is the MCU more important for Ca2+ buffering or ATP homeostasis at the synapse? In Specific
Aim three, the consequence of metabolic switching between glycolysis and mitochondrial respiration in support
of transmission will be examined in normal synapses, and in cases where MCU function is acutely or chronically
impaired.
This project will provide a detailed understanding of the range of metabolic strategies that are employed by
synapses to support synaptic transmission in physiological and pathological settings. This knowledge will identify
viable routes of intervention for restoring function to energy-deficient synapses that can be leveraged
therapeutically to alleviate disease-related synaptic dysfunction.
这项工作与正常衰老和病理学相关,例如大脑功能的阿尔茨海默氏病
由于线粒体呼吸缺陷和细胞能量丧失而受到损害。该项目的长期目标
是为了改善因线粒体功能障碍而导致的神经传递缺陷,以阻止疾病
发展为后来的退化阶段,增加了越来越多的人群中的健康状态
相关的神经疾病。突触功能的生物能源的基本机制
正常组织必须首先解决,以治愈这些疾病。我们在这个项目中的目标是两个方面。首先,
线粒体Ca2+摄取量ATP的产生响应于活动的程度。
其次,在突触前终端使用补偿性策略以延迟能量损失的程度将
当线粒体功能受损时,请确定。该项目的结果将提供明确的机械
深入了解突触线粒体的CA2+延伸和产生ATP的作用,这是必不可少的第一步
目前不清楚。
PI开发了几种新颖的方法,使我们能够剖析过去的生物能策略
使用电生理学,Ca2+成像和
ATP成像。与小型传统突触相反,啮齿动物中的巨型“类似花萼”令人兴奋的突触
听觉脑干允许从突触前终端进行直接的全细胞记录。这个实验
可访问性允许操纵突触前[Ca2+]和[ATP],因此可以剖析
突触线粒体的相互依存的Ca2+延伸和能量支撑作用。在第一个特定目标中
线粒体钙能形成蛋白(MCU)有助于线粒体呼吸和ATP稳态的程度
将确定以下突触活动。第二个特定目标将剖析
线粒体Ca2+摄取与已制备的突触传播和突触前的呼吸
可塑性。也就是说,MCU对于突触时的Ca2+缓冲或ATP稳态更重要吗?具体
目标三,糖酵解和线粒体呼吸之间的代谢切换的结果
将在正常突触中检查传输
受损。
该项目将详细了解由
突触以支持物理和病理环境中的合成传播。这些知识将确定
可行的干预途径,用于恢复可以利用能量的突触的功能
治疗以减轻与疾病相关的突触功能障碍。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Postsynaptic Calcium Extrusion at the Mouse Neuromuscular Junction Alkalinizes the Synaptic Cleft.
- DOI:10.1523/jneurosci.0815-23.2023
- 发表时间:2023-08-09
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Modulatory Effects of Noradrenergic and Serotonergic Signaling Pathway on Neurovascular Coupling.
去甲肾上腺素能和血清素信号传导途径对神经血管耦合的调节作用。
- DOI:10.21203/rs.3.rs-3104893/v1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Renden,RobertB;Institoris,Adam;Sharma,Kushal;Tran,CamHaT
- 通讯作者:Tran,CamHaT
Developmental shift to mitochondrial respiration for energetic support of sustained transmission during maturation at the calyx of Held.
- DOI:10.1152/jn.00333.2021
- 发表时间:2021-10-01
- 期刊:
- 影响因子:2.5
- 作者:Lujan BJ;Singh M;Singh A;Renden RB
- 通讯作者:Renden RB
Basal lamina: A novel pH regulator at the neuromuscular junction.
- DOI:10.1177/00368504231225066
- 发表时间:2024-01
- 期刊:
- 影响因子:2.1
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT B RENDEN其他文献
ROBERT B RENDEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT B RENDEN', 18)}}的其他基金
Dynamin-related protein 1 and mitochondrial fission adapters regulate presynaptic function
动力相关蛋白 1 和线粒体裂变接头调节突触前功能
- 批准号:
10660812 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
Activity-dependent energy homeostasis at the presynaptic terminal
突触前末梢活动依赖性能量稳态
- 批准号:
10036325 - 财政年份:2020
- 资助金额:
$ 53.91万 - 项目类别:
Activity-dependent energy homeostasis at the presynaptic terminal
突触前末梢活动依赖性能量稳态
- 批准号:
10227101 - 财政年份:2020
- 资助金额:
$ 53.91万 - 项目类别:
Function of group III mGluRs at the calyx of Held
Held 花萼第 III 族 mGluR 的功能
- 批准号:
6868901 - 财政年份:2004
- 资助金额:
$ 53.91万 - 项目类别:
Function of group III mGluRs at the calyx of Held
Held 花萼第 III 族 mGluR 的功能
- 批准号:
6791930 - 财政年份:2004
- 资助金额:
$ 53.91万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Multimodal control of mitochondrial energetics to shape biological aging
线粒体能量的多模式控制塑造生物衰老
- 批准号:
10864185 - 财政年份:2023
- 资助金额:
$ 53.91万 - 项目类别:
Targeting Energetics to Improve Outcomes in Hypertrophic Cardiomyopathy
靶向能量药物以改善肥厚型心肌病的预后
- 批准号:
10687401 - 财政年份:2022
- 资助金额:
$ 53.91万 - 项目类别:
Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
- 批准号:
10758687 - 财政年份:2022
- 资助金额:
$ 53.91万 - 项目类别:
Activity-dependent energy homeostasis at the presynaptic terminal
突触前末梢活动依赖性能量稳态
- 批准号:
10036325 - 财政年份:2020
- 资助金额:
$ 53.91万 - 项目类别: