Machine-Assisted Interdisciplinary Approach For Early Clinical Evaluation of Neurodevelopmental Disorders
机器辅助跨学科方法对神经发育障碍的早期临床评估
基本信息
- 批准号:10394658
- 负责人:
- 金额:$ 35.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAppointmentAreaBiometryCaregiversCaringChildChild HealthChildhoodClinicClinicalClinical DataClinical assessmentsCodeComputerized Medical RecordDataDemographic FactorsDevelopmentDevelopmental Delay DisordersDiagnosisDiagnosticDiseaseDistrict of ColumbiaEarly DiagnosisEarly InterventionEarly identificationEnsureEpidemiologic FactorsEvaluationEvaluation ResearchGeneticGenetic CounselingGenetic RiskGenetic ScreeningGenomicsGuidelinesHealthcareHospitalsIndividualIntakeInvestigationKnowledgeLeadMachine LearningMedicalMedical GeneticsNeurodevelopmental DisorderNotificationPathway interactionsPatientsPediatricsPhasePhenotypePhysiciansPilot ProjectsPopulationPrimary Health CareProcessPublic HealthQuestionnairesRare DiseasesRecording of previous eventsRecordsResourcesRiskSiteSpecialistStandardizationSystemTelemedicineTestingTimeTrainingUnited StatesVariantVisitWell Child Visitsbasecare providersclinical encounterclinical sequencingcostfeature extractiongenetic disorder diagnosisgenetic testinggenome sequencinghigh riskimprovedinnovationinsurance claimsinterdisciplinary approachmachine learning algorithmmetropolitanmolecular diagnosticsmultidisciplinarypatient screeningpediatricianpersonalized managementpreservationpreventprimary care settingprogramsremote visitresearch clinical testingroutine screeningscreeningstandard of caresupport toolstargeted treatmentvariant of unknown significancewhole genome
项目摘要
ABSTRACT
Neurodevelopmental delay is a feature of a majority of rare diseases and is often the first presenting sign.
Nonspecific early presentations of rare disorders challenge both patients and caregivers who often struggle for
years without diagnoses, and physicians who must distinguish between common concerns and rare disease.
Early evaluations can streamline the diagnostic process and lead to rapid implementation of targeted
therapies. In this proposal, our primary objective is to shorten the pathway to comprehensive genetic
evaluations for suspected neurodevelopmental disorders (NDDs) through primary care electronic medical
record (EMR) based machine-learning algorithmic identification of patients clinically eligible for genetic
evaluation. We discuss our plan for integration of pretest genetic counseling in the primary care setting through
video and telemedicine, and will develop a paradigm that can be adapted to the pediatric primary care
workflow. We will implement and iteratively improve upon our algorithms during the UG3 Phase through a
close partnership between academic geneticists, neurodevelopmental pediatricians, and the primary care
pediatricians of Children’s Health Center (CHC) in Washington DC, and transition the mature program during
the UH3 to all CNH Goldberg Center practices. We will thus bring early genetic evaluations to the largest
network of primary pediatric practices in the D.C. Metropolitan area by leveraging our multidisciplinary team
dedicated to early identification and characterization of NDDs. We will address the following aims:
Aim 1 (UG3): Assess utility of a scalable machine-assisted pipeline for early identification of patients
with NDDs based on automated feature extraction from EMR. We will train and iteratively refine a machine-
learning algorithm to identify children at high risk of genetic NDDs based on their EMR.
Aim 2 (UG3): Assess utility of a primary care clinician-initiated multidisciplinary evaluation to expedite
genetic evaluation and neurodevelopmental phenotyping. Our workflow starting with automated chart
identification will permit primary care providers access to our multidisciplinary neuro-developmental-genetics
team. Technical innovations including telemedicine, application based videos, and electronic intakes will
facilitate this process.
Aim 3 (UH3): Evaluate generalizability of machine-assisted identification of NDDs from EMR by
expanding access to entire network of Goldberg Center Pediatric practices. We will expand to all CNH
primary care clinics serving the highly diverse Washington DC metropolitan area and ensure approach is
robust to the specific demographic and epidemiologic factors of different sites.
Our approach will identify patients with developmental delay in the primary care setting at the beginning of a
diagnostic odyssey and expedite deep phenotyping and genetic investigations, as well as reevaluate
sequencing results for early diagnosis in the diverse DC metropolitan population.
抽象的
神经发育延迟是大多数罕见疾病的特征,通常是第一个呈现迹象。
罕见疾病的非特异性早期介绍挑战了患者和经常为之奋斗的护理人员
几年没有诊断,必须区分常见问题和罕见疾病的医生。
早期评估可以简化诊断过程,并导致目标快速实施
疗法。在此提案中,我们的主要目标是缩短通往综合遗传的途径
通过初级保健电子医疗评估可疑神经发育障碍(NDDS)
基于记录(EMR)的机器学习算法鉴定患者临床上有资格获得遗传
评估。我们讨论了通过通过
视频和远程医疗,并将开发一个可以适应儿科初级保健的范式
工作流程。我们将在UG3阶段通过A实施并迭代地对我们的算法进行改进
学术遗传学家,神经发育儿科医生与初级保健之间的密切合作伙伴关系
华盛顿特区儿童健康中心(CHC)的儿科医生,并在成熟计划过渡期间
所有CNH Goldberg中心的UH3练习。因此,我们将将早期的遗传评估带到最大
通过利用我们的多学科团队,在华盛顿大都市地区的主要小儿实践网络
致力于NDD的早期识别和表征。我们将解决以下目标:
AIM 1(UG3):评估可扩展的机器辅助管道的效用,以及早确定患者
使用基于EMR自动化特征提取的NDD。我们将训练并迭代地完善机器 -
学习基于EMR的遗传NDD高风险的儿童识别算法。
AIM 2(UG3):评估初级保健临床启动的多学科评估的效用以加快
遗传评估和神经发育表型。我们的工作流程从自动图表开始
识别将允许初级保健提供者访问我们的多学科神经发展遗传学
团队。远程医疗,基于应用程序的视频和电子摄入包括的技术创新将
促进此过程。
AIM 3(UH3):评估机器辅助从EMR识别NDD的概括性
扩大访问Goldberg Center儿科实践的整个网络的访问。我们将扩展到所有CNH
为华盛顿特区大都会地区提供高度多样化的初级保健诊所,并确保方法是
对不同站点的特定人口统计学和流行病学因素的强大鲁棒性。
我们的方法将确定在A开始时在初级保健环境中发育延迟的患者
诊断奥德赛和加急的深层表型和遗传研究,并重新评估
潜水员DC大都市人口早期诊断的测序结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seth I Berger其他文献
Seth I Berger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seth I Berger', 18)}}的其他基金
Machine-Assisted Interdisciplinary Approach For Early Clinical Evaluation of Neurodevelopmental Disorders
机器辅助跨学科方法对神经发育障碍的早期临床评估
- 批准号:
10555279 - 财政年份:2022
- 资助金额:
$ 35.58万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 35.58万 - 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 35.58万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 35.58万 - 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 35.58万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 35.58万 - 项目类别: