Unified Computation Tools for Natural Products Research
用于天然产物研究的统一计算工具
基本信息
- 批准号:10393694
- 负责人:
- 金额:$ 54.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-05 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBindingBiologicalBiological AssayChemicalsClassificationCommunitiesCountryCyanobacteriumDataData AnalyticsDatabasesDevelopmentEcosystemEvaluationFDA approvedFutureGenomicsGoalsGrantKnowledgeLaboratoriesLegal patentLibrariesMachine LearningMainstreamingMass Spectrum AnalysisMethodsMolecularMolecular ProfilingMolecular StructureNatural ProductsNoiseNuclear Magnetic ResonanceOccupationsOrganismPaperPathway AnalysisPharmaceutical PreparationsPositioning AttributeProcessPropertyPublicationsResearchResearch ActivityResearch PersonnelResourcesRouteSourceSpectrometryStructureStudentsSystemTechnologyTimeannotation systembasecomputerized toolsdeep learningdeep learning modeldrug discoverygenome sequencinggenomic datainformatics toolinnovationmarine natural productmetabolomicsquantumrepositorysmall moleculesocialtoolweb site
项目摘要
Summary
The overarching goal for this proposed renewal application will be to further advance tools that are in development and to
effectively integrate several types of analytical data with biological assay data and genomic information. This will create a
powerful set of tools for faster and even more accurate identification of new molecules, dereplication of known ones, and
to directly infer biological activities from spectroscopic information. In the current period of support, we have made
substantial progress in developing highly useful tools for automatic annotations and identifications of organic molecules,
specifically focused on natural products. The Global Natural Products Social (GNPS) Molecular Networking analysis and
knowledge dissemination ecosystem has processed almost 160,000 jobs in nearly 160 countries worldwide, has 4-6,000
new job submissions per month and is accessed over 200,000 times a month (majority accessions are for reference library
access, inspection of public data and previous jobs that the community shares as hyperlinks in papers), and has become a
mainstream tool for the annotation of organic molecules deriving from diverse sources, especially in metabolomics
workflows. The public website for Small Molecule Accurate Recognition Technology (SMART), a deep learning model
for providing candidate structures based on 1H-13C HSQC NMR data, went live in December 2019 and already has over
3000 jobs in 50 countries. All tools developed in this proposal will become part of this analysis ecosystem. The four
laboratories contributing to this proposed research activity have created an open and integrated team that is continuing to
creatively innovate new informatic tools to enhance small molecule structure annotations and inference of their chemical
and biological properties. We have four specific aims: 1) To complete the development and evaluation of a set of new
and innovative tools for natural products analysis, and deploy these as freely available resources for the worldwide
community. 2) To refine the structural characterization of molecules through leveraging repository scale mass
spectral information along with NMR data and genomic inputs. 3) To create a new SMART-based tool that
integrates mass spectrometry and HSQC NMR data as the input for a new deep learning system with the goal of
achieving more accurate predictions of structure. 4) To use deep learning to enhance SMART with bioactivity data
so as to enable SMART to predict activities of molecules based on spectroscopic features. The data will also augment
the GNPS database with biological assay binding data. An additional consequence of these goals will be the further
digitization of natural products analytical data so that they can be used in the computational tools planned herein, as
well as other tools in the future. Completion of these four specific aims will create new integrated tools for the precise
identification of new natural product structures, and enable inference of their structural relatedness to other classes of
organic molecules and their biological properties. Thus, these new informatic tools will have the potential to greatly
enhance the small molecule drug discovery process.
概括
此拟议更新应用程序的总体目标将是进一步推进正在开发的工具并
有效地将多种类型的分析数据与生物测定数据和基因组信息整合。这将创建一个
一套强大的工具,可以更快、更准确地识别新分子、消除已知分子,以及
从光谱信息直接推断生物活性。在当前的支持期间,我们做了
在开发用于自动注释和识别有机分子的非常有用的工具方面取得了实质性进展,
特别专注于天然产品。全球天然产品社交 (GNPS) 分子网络分析和
知识传播生态系统已在全球近 160 个国家处理了近 160,000 个工作岗位,拥有 4-6,000 个
每月提交新工作,每月访问次数超过 200,000 次(大多数访问是为了参考图书馆
访问、检查社区以论文中的超链接形式共享的公共数据和以前的工作),并已成为
用于注释不同来源的有机分子的主流工具,特别是在代谢组学中
工作流程。小分子精确识别技术(SMART)的公共网站,一种深度学习模型
用于提供基于 1H-13C HSQC NMR 数据的候选结构,于 2019 年 12 月上线,现已超过
50 个国家/地区的 3000 个工作岗位。本提案中开发的所有工具都将成为该分析生态系统的一部分。四个
为这项拟议的研究活动做出贡献的实验室已经创建了一个开放和综合的团队,该团队正在继续
创造性地创新新的信息工具,以增强小分子结构注释和化学推断
和生物学特性。我们有四个具体目标:1)完成一套新的开发和评估
和用于天然产物分析的创新工具,并将它们作为免费资源提供给全世界
社区。 2)通过利用存储库规模质量来完善分子的结构表征
光谱信息以及 NMR 数据和基因组输入。 3) 创建一个新的基于 SMART 的工具
集成质谱和 HSQC NMR 数据作为新深度学习系统的输入,其目标是
实现更准确的结构预测。 4)利用深度学习通过生物活性数据增强SMART
从而使SMART能够根据光谱特征预测分子的活动。数据也将增加
具有生物测定结合数据的 GNPS 数据库。这些目标的另一个后果将是进一步
天然产品分析数据的数字化,以便它们可以用于本文计划的计算工具中,如
以及未来的其他工具。完成这四个具体目标将为精确的
识别新的天然产物结构,并推断它们与其他类别的结构相关性
有机分子及其生物学特性。因此,这些新的信息工具将有潜力极大地
加强小分子药物发现过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARRISON W COTTRELL其他文献
GARRISON W COTTRELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARRISON W COTTRELL', 18)}}的其他基金
Unified Computation Tools for Natural Products Research
用于天然产物研究的统一计算工具
- 批准号:
10211176 - 财政年份:2013
- 资助金额:
$ 54.68万 - 项目类别:
Tools for rapid and accurate structure elucidation of natural products
快速准确地解析天然产物结构的工具
- 批准号:
9921415 - 财政年份:2013
- 资助金额:
$ 54.68万 - 项目类别:
Tools for rapid and accurate structure elucidation of natural products
快速准确地解析天然产物结构的工具
- 批准号:
10393432 - 财政年份:2013
- 资助金额:
$ 54.68万 - 项目类别:
Tools for rapid and accurate structure elucidation of natural products
快速准确地解析天然产物结构的工具
- 批准号:
9384193 - 财政年份:2013
- 资助金额:
$ 54.68万 - 项目类别:
Tools for rapid and accurate structure elucidation of natural products
快速准确地解析天然产物结构的工具
- 批准号:
10390224 - 财政年份:2013
- 资助金额:
$ 54.68万 - 项目类别:
Unified Computation Tools for Natural Products Research
用于天然产物研究的统一计算工具
- 批准号:
10608987 - 财政年份:2013
- 资助金额:
$ 54.68万 - 项目类别:
相似国自然基金
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 54.68万 - 项目类别:
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别:
Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
- 批准号:
10537799 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别:
Selective targeting of matrix metalloproteinases for developing preterm labor therapeutics
选择性靶向基质金属蛋白酶用于开发早产疗法
- 批准号:
10509786 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别: