Natural Language Processing and Automated Speech Recognition to Identify Older Adults with Cognitive Impairment
自然语言处理和自动语音识别可识别患有认知障碍的老年人
基本信息
- 批准号:10383696
- 负责人:
- 金额:$ 81.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAcuteAddressAlgorithmsAlzheimer&aposs disease related dementiaCaregiversChicagoClinicalClinical assessmentsCodeCognitionCognitiveDataData AnalysesData ElementData ScientistData SetDevelopmentDiagnosisDiagnosticDocumentationEarly DiagnosisElderlyElectronic Health RecordHealth ServicesHealth systemImpaired cognitionIndividualInsurance CarriersMachine LearningMeasuresMental disordersMethodsNatural Language ProcessingNeurocognitiveNew York CityParkinson DiseasePatient CarePatientsPersonsPhysiciansPopulationPositioning AttributePreventive carePrimary Health CareProceduresProviderPsychiatric DiagnosisReference StandardsResearchResearch PersonnelResource AllocationRisk FactorsSamplingSemanticsSensitivity and SpecificityServicesSigns and SymptomsSpeechStructureStudy SubjectTechnologyTestingTextTimeTrainingUnited StatesValidationVisitadverse event riskaging populationautomated speech recognitionbasecare coordinationclinical encountercognitive functioncognitive testingdeep learningdemographicsdiagnostic algorithmelectronic dataelectronic structurefallsfeature extractionfinancial incentivehealth care settingsimprovedinsurance claimsmachine learning algorithmmachine learning classifiermental statemild cognitive impairmentmultidisciplinarypreventprimary care settingrecruitrisk mitigationscreeningsecondary analysisstructured datasuccesstesting servicestooltreatment choiceunstructured data
项目摘要
Project Summary
The purpose of this proposal is to develop two strategies, natural language processing (NLP) and automated
speech analysis (ASA), to enable automated identification of patients with cognitive impairment (CI), from mild
cognitive impairment (MCI) to Alzheimer’s Disease Related Dementias (ADRD) in clinical settings. The number
of older adults in the United States with MCI and ADRD is increasing and yet the ability of clinicians and
researchers to identify them at scale has advanced little over recent decades and screening with clinical
assessments is done inconsistently. Alternative strategies using available data, like analysis of diagnostic
codes in the clinical record or insurance claims, have very low sensitivity. NLP and ASA used with machine
learning are technologies that could greatly increase ability to detect MCI and ADRD in clinical contexts. NLP
automatically converts text in the electronic health record (EHR) into structured concepts suitable for analysis.
Thus, clinicians’ documentation of signs and symptoms or orders of tests and services that reflect or address
cognitive limitations can be efficiently captured, possibly long before the clinician uses an ADRD-related
diagnostic code. ASA directly measures cognition by recognizing different features of cognition captured in
speech. Extracting features through both NLP and ASA could thus provide a unique measure of cognition and
its impact on the individual and their caregivers.
Early detection of MCI and ADRD can help researchers identify appropriate patients for research and help
clinicians and health systems target patients for preventive care and care coordination. For these reasons,
more efficient, highly scalable strategies are needed to identify people with MCI and ADRD. The Specific Aims
of this proposal are to (1) Develop and validate a ML algorithm using features extracted from the EHR with
NLP to identify patients with CI, (2) Develop and validate a ML algorithm using features extracted from ASA of
audio recordings of patient-provider encounters during routine primary care visits to identify patients with CI,
(3) Develop and validate a ML algorithm using both NLP and ASA extracted features to create an integrated CI
diagnostic algorithm. We will develop machine learning algorithms using NLP and ASA extracted features
trained against neurocognitive assessment data on 800 primary care patients in New York City and validate
them in an independent sample of 200 patients in Chicago. In secondary analyses we will train ML algorithms
to identify MCI and its subtypes. This project will be the most rigorous development of NLP, ASA, and ML
algorithms for CI yet performed, the first to test ASA in primary care settings, and the first to test NLP and ASA
feature extraction strategies in combination. The multi-disciplinary team of clinicians, health services
researchers, and neurocognitive and data scientists will apply machine learning to develop these highly
scalable, automated technologies for identification of MCI and ADRD.
1
项目摘要
该提案的目的是制定两种策略:自然语言处理(NLP)并自动化
语音分析(ASA),以实现对认知障碍患者(CI)的自动鉴定,
在临床环境中,对阿尔茨海默氏病有关的痴呆症(ADRD)的认知障碍(MCI)。数字
在美国,有MCI和ADRD的老年人正在增加,但临床医生和
近几十年来,研究人员以大规模识别它们几乎没有进步,并通过临床进行筛查
评估不一致。使用可用数据的替代策略,例如诊断分析
临床记录或保险索赔中的代码具有非常低的灵敏度。 NLP和ASA与机器一起使用
学习是可以大大提高在临床环境中检测MCI和ADRD的能力的技术。 NLP
自动将电子健康记录(EHR)中的文本转换为适合分析的结构化概念。
这是临床医生的标志,符号或测试和服务的订单的文档,以反映或解决
可以有效地捕获认知局限
诊断代码。 ASA通过识别捕获的认知的不同特征直接测量认知
演讲。因此,通过NLP和ASA提取特征可以提供对认知和
它对个人及其护理人员的影响。
早期发现MCI和ADRD可以帮助研究人员确定适当的患者进行研究和帮助
临床医生和卫生系统针对预防性护理和护理协调的患者。由于这些原因,
需要更有效,高度可扩展的策略来识别MCI和ADRD的人。具体目标
该建议的内容是(1)使用从EHR中提取的特征来开发和验证ML算法
NLP识别CI患者,(2)使用从ASA的ASA提取的特征开发和验证ML算法
常规初级保健访问期间患者提供者遭遇的音频记录以识别CI患者,
(3)使用NLP和ASA提取的特征开发和验证ML算法以创建集成的CI
诊断算法。我们将使用NLP和ASA提取的功能开发机器学习算法
针对纽约市800名初级保健患者的神经认知评估数据培训并验证
他们在芝加哥的200名患者的独立样本中。在次要分析中,我们将训练ML算法
识别MCI及其亚型。该项目将是NLP,ASA和ML最严格的开发
CI的算法,第一个在初级保健设置中测试ASA的算法,以及第一个测试NLP和ASA
结合特征提取策略。临床医生,卫生服务的多学科团队
研究人员以及神经认知和数据科学家将应用机器学习来发展这些
可扩展的自动化技术,用于识别MCI和ADRD。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex D Federman其他文献
Natural Language Processing to Identify Patients with Cognitive Impairment
自然语言处理识别认知障碍患者
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Khalil I Hussein;Lili Chan;Tielman T. Van Vleck;Kelly Beers;M. R. Mindt;Michael Wolf;Laura M. Curtis;Parul Agarwal;Juan P Wisnivesky;Girish N. Nadkarni;Alex D Federman - 通讯作者:
Alex D Federman
Relationship Between Cognitive Impairment and Depression Among Middle Aged and Older Adults in Primary Care
初级保健中老年人认知障碍与抑郁症的关系
- DOI:
10.1177/23337214231214217 - 发表时间:
2024 - 期刊:
- 影响因子:2.7
- 作者:
Alex D Federman;Jacqueline Becker;Fernando Carnavali;M. Rivera Mindt;Dayeon Cho;Gaurav Pandey;Lili Chan;Laura M. Curtis;Michael S Wolf;Juan P Wisnivesky - 通讯作者:
Juan P Wisnivesky
Alex D Federman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex D Federman', 18)}}的其他基金
Research Training for the Care of Vulnerable Older Adults with Alzheimer’s Disease and Related Dementias and Other Chronic Conditions
针对患有阿尔茨海默病和相关痴呆症及其他慢性病的弱势老年人的护理研究培训
- 批准号:
10160741 - 财政年份:2020
- 资助金额:
$ 81.03万 - 项目类别:
Research Training for the Care of Vulnerable Older Adults with Alzheimer’s Disease and Related Dementias and Other Chronic Conditions
针对患有阿尔茨海默病和相关痴呆症及其他慢性病的弱势老年人的护理研究培训
- 批准号:
10427387 - 财政年份:2020
- 资助金额:
$ 81.03万 - 项目类别:
Natural Language Processing and Automated Speech Recognition to Identify Older Adults with Cognitive Impairment
自然语言处理和自动语音识别可识别患有认知障碍的老年人
- 批准号:
10609461 - 财政年份:2020
- 资助金额:
$ 81.03万 - 项目类别:
Research Training for the Care of Vulnerable Older Adults with Alzheimer’s Disease and Related Dementias and Other Chronic Conditions
针对患有阿尔茨海默病和相关痴呆症及其他慢性病的弱势老年人的护理研究培训
- 批准号:
10629300 - 财政年份:2020
- 资助金额:
$ 81.03万 - 项目类别:
EHR-based Universal Medication Schedule to Improve Adherence to Complex Regimens
基于 EHR 的通用用药计划可提高对复杂治疗方案的依从性
- 批准号:
9980518 - 财政年份:2016
- 资助金额:
$ 81.03万 - 项目类别:
EHR-based Universal Medication Schedule to Improve Adherence to Complex Regimens
基于 EHR 的通用用药计划可提高对复杂治疗方案的依从性
- 批准号:
9358340 - 财政年份:2016
- 资助金额:
$ 81.03万 - 项目类别:
Home-based Primary Care for Homebound Seniors: a Randomized Controlled Trial
居家老年人的家庭初级护理:随机对照试验
- 批准号:
9082810 - 财政年份:2016
- 资助金额:
$ 81.03万 - 项目类别:
Obesity and Asthma: Unveiling Metabolic and Behavioral Pathways
肥胖和哮喘:揭示代谢和行为途径
- 批准号:
9127632 - 财政年份:2016
- 资助金额:
$ 81.03万 - 项目类别:
Self-management behaviors among COPD patients with multi-morbidity
多种疾病的慢性阻塞性肺病患者的自我管理行为
- 批准号:
8976686 - 财政年份:2015
- 资助金额:
$ 81.03万 - 项目类别:
Longitudinal study of cognition, health literacy, and self-care in COPD patients
COPD患者认知、健康素养和自我护理的纵向研究
- 批准号:
8490418 - 财政年份:2011
- 资助金额:
$ 81.03万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
The neural mechanisms and mnemonic consequences of sound processing during sleep
睡眠期间声音处理的神经机制和记忆后果
- 批准号:
10734969 - 财政年份:2023
- 资助金额:
$ 81.03万 - 项目类别:
High-throughput in vivo discovery of novel countermeasures against organophosphate-induced seizure and status epilepticus using zebrafish
利用斑马鱼高通量体内发现针对有机磷诱发的癫痫发作和癫痫持续状态的新对策
- 批准号:
10457138 - 财政年份:2022
- 资助金额:
$ 81.03万 - 项目类别:
Continuous Photoacoustic Monitoring of Neonatal Stroke in Intensive Care Unit
重症监护病房新生儿中风的连续光声监测
- 批准号:
10548689 - 财政年份:2022
- 资助金额:
$ 81.03万 - 项目类别:
Evaluation of a structure-function model for auditory consequences of impact acceleration brain injury and protection via the olivocochlear system
冲击加速脑损伤的听觉后果的结构功能模型评估以及通过橄榄耳蜗系统的保护
- 批准号:
10605573 - 财政年份:2022
- 资助金额:
$ 81.03万 - 项目类别:
An RDoC Approach to Perinatal Affective Disorders: The Role of Neuroactive Steroids and Potential Threat
RDoC 治疗围产期情感障碍的方法:神经活性类固醇的作用和潜在威胁
- 批准号:
10595551 - 财政年份:2022
- 资助金额:
$ 81.03万 - 项目类别: