Diversity Supplement: 5P01CA118816 Project 1
多样性补充:5P01CA118816 项目 1
基本信息
- 批准号:10381390
- 负责人:
- 金额:$ 8.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAreaArtificial IntelligenceBiologicalBiological AssayBiological MonitoringCellularityCharacteristicsClinicalDataData AnalysesData SetDevelopmentDiffusion Magnetic Resonance ImagingDiseaseExcisionFunctional ImagingGliomaGliosisGoalsHeterogeneityHistologicHistopathologyHypoxiaImageIntelligenceKnowledgeLearningLesionLinkLocationMachine LearningMagnetic Resonance ImagingMalignant - descriptorMapsModalityModelingMolecularMultiparametric AnalysisNewly DiagnosedOperative Surgical ProceduresOutcomePatientsPerfusion Weighted MRIPopulation StatisticsPrimary Brain NeoplasmsPropertyProtocols documentationRadiation therapyRecurrenceRecurrent tumorResidual TumorsRiskSamplingScanningSourceStandardizationStatistical ModelsSubgroupSurrogate MarkersSurvival RateTherapeutic TrialsTissue SampleTissue imagingTumor BiologyWorkWorld Health Organizationaccurate diagnosisanatomic imagingclinical Diagnosiscohortdeep learningdirect patient caregenomic biomarkerimage guidedimaging biomarkerimaging modalityimprovedin vivo imaginginnovationmetabolic imagingmolecular markermolecular phenotypemultimodalitynon-invasive imagingnovelnovel strategiesoutcome predictionparent grantprognosticresponsespectroscopic imagingstatistical learningtumortumor heterogeneitytumor progression
项目摘要
PROJECT SUMMARY
The goal of this work is to assess the clinical value of voxel-wise predictive spatial maps of tumor heterogeneity
that directly reflect histopathologically defined tumor biology. It is well known that tissue samples used for clinical
diagnosis come from a relatively small portion of a vastly heterogenous lesion and are obtained infrequently
during the course of the disease. Non-invasive imaging markers that are able to assess intratumoral
heterogeneity and serially monitor biological properties of the tumor are critical for assessing response to therapy
and directing patient care.
The modalities that have shown the most promise in quantifying surrogate markers of malignant characteristics
in patients with gliomas include diffusion-weighted MRI, perfusion-weighted MRI, and 1H MR spectroscopic
imaging (MRSI). We have accumulated multi-parametric physiologic and metabolic imaging data from pre-
surgical scans in order to target over 2000 tissue samples from more than 750 patients with glioma. These
samples are unique in that they have each been specifically selected to target heterogeneous regions of tumor
biology, including: hypoxia, proliferation, cellularity, gliosis, and malignant transformation using a combination of
anatomic, physiologic, and metabolic imaging. Using this well-characterized cohort, our novel approach will
leverage multi-parametric imaging features in conjunction with advanced statistical-, machine-, and deep-
learning models to predict tumor biology, molecular phenotype, and progression.
Aim 1 focuses on predicting intra-tumoral heterogeneity and the extent of infiltrating tumor and in newly-
diagnosed glioma in order to identify areas of malignant characteristics that will direct tissue sampling for a more
accurate diagnosis and predict the spatial location and characteristics of residual disease. Aim 2 will define
characteristics of treatment related changes vs recurrent tumor and malignant transformation within lower grade
molecular sub-groups of glioma within patients undergoing surgery for suspected tumor progression.
This supplement will allow for the development and incorporation of new machine learning approaches on our
existing data as well as learn the imaging features that are predictive of newly-defined molecular subgroups of
glioma that are more prognostic of outcome than previously defined 2016 criteria by the World Health
Organization. The result will enhance and expand current strategies for evaluating patients with glioma and
provide a framework for incorporating newly identified imaging, molecular, and genomic markers that can be
integrated with current response assessment criteria for evaluating standard and experimental treatments.
项目概要
这项工作的目标是评估肿瘤异质性的体素预测空间图的临床价值
直接反映组织病理学定义的肿瘤生物学。众所周知,组织样本用于临床
诊断来自于异质性病变的相对较小部分,并且很少获得
在疾病过程中。能够评估肿瘤内的非侵入性成像标记物
异质性和连续监测肿瘤的生物学特性对于评估治疗反应至关重要
并指导患者护理。
在量化恶性特征替代标志物方面最有希望的方法
神经胶质瘤患者的检查包括弥散加权 MRI、灌注加权 MRI 和 1H MR 波谱
成像(MRSI)。我们积累了前期的多参数生理和代谢成像数据
手术扫描,以针对来自 750 多名神经胶质瘤患者的 2000 多个组织样本。这些
样本的独特之处在于它们都是针对肿瘤的异质区域专门选择的
生物学,包括:缺氧、增殖、细胞结构、神经胶质增生和恶性转化
解剖学、生理学和代谢成像。利用这个特征鲜明的群体,我们的新颖方法将
利用多参数成像功能与先进的统计、机器和深度分析相结合
预测肿瘤生物学、分子表型和进展的学习模型。
目标 1 侧重于预测肿瘤内异质性和浸润肿瘤的程度以及新的
诊断出神经胶质瘤,以确定恶性特征的区域,从而指导组织取样以获得更多信息
准确诊断并预测残留病灶的空间位置和特征。目标 2 将定义
治疗相关变化与低级别肿瘤复发和恶变的特征
因疑似肿瘤进展而接受手术的患者中神经胶质瘤的分子亚组。
该补充将允许在我们的系统上开发和合并新的机器学习方法
现有数据以及学习可预测新定义的分子亚组的成像特征
与世界卫生组织先前定义的 2016 年标准相比,神经胶质瘤的预后更好
组织。该结果将增强和扩展当前评估神经胶质瘤患者的策略
提供了一个框架,用于整合新发现的成像、分子和基因组标记,这些标记可以
与当前的反应评估标准相结合,用于评估标准和实验治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan M Chang其他文献
Consensus on the Role of Human Cytomegalovirus in Glioblastoma Neuro-onco Lo Gy
人类巨细胞病毒在胶质母细胞瘤神经肿瘤中的作用共识
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
K. Dziurzynski;Susan M Chang;A. Heimberger;R. Kalejta;Stuart R Mcgregor;Dallas;Martine Smit;L. Soroceanu;C. Cobbs;Gliomas Symposium;Wisconsin Madison - 通讯作者:
Wisconsin Madison
PET-based response assessment criteria for diffuse gliomas (PET RANO 1.0): a report of the RANO group.
基于 PET 的弥漫性胶质瘤反应评估标准 (PET RANO 1.0):RANO 小组的报告。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
N. Albert;N. Galldiks;B. Ellingson;M. J. van den Bent;Susan M Chang;F. Cicone;J. de Groot;E. Koh;Ian Law;E. Le Rhun;M. Mair;Giuseppe Minniti;R. Rudà;A. M. Scott;Susan C Short;M. Smits;B. Suchorska;N. Tolboom;Tatjana Traub;Joerg;Antoine Verger;M. Weller;Patrick Y Wen;M. Preusser - 通讯作者:
M. Preusser
Susan M Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan M Chang', 18)}}的其他基金
Quantitative Steady-State and Dynamic Metabolic MRI for Evaluating Patients with Glioma
用于评估神经胶质瘤患者的定量稳态和动态代谢 MRI
- 批准号:
10588189 - 财政年份:2022
- 资助金额:
$ 8.77万 - 项目类别:
Quantitative Steady-State and Dynamic Metabolic MRI for Evaluating Patients with Glioma
用于评估神经胶质瘤患者的定量稳态和动态代谢 MRI
- 批准号:
10444826 - 财政年份:2022
- 资助金额:
$ 8.77万 - 项目类别:
NOVEL BIOMARKERS OF MALIGNANT PROGRESSION IN RECURRENT LOW GRADE GLIOMA
复发性低级别胶质瘤恶性进展的新型生物标志物
- 批准号:
8514310 - 财政年份:2013
- 资助金额:
$ 8.77万 - 项目类别:
Imaging and Tissue Correlates to Optimize Management of Glioblastoma
影像学和组织相关性可优化胶质母细胞瘤的治疗
- 批准号:
8721854 - 财政年份:2007
- 资助金额:
$ 8.77万 - 项目类别:
Noninvasive Metabolic Signatures to Improve Management of Molecular Subtypes of Glioma
无创代谢特征可改善神经胶质瘤分子亚型的管理
- 批准号:
9790509 - 财政年份:2007
- 资助金额:
$ 8.77万 - 项目类别:
Imaging and Tissue Correlates to Optimize Management of Glioblastoma
影像学和组织相关性可优化胶质母细胞瘤的治疗
- 批准号:
9114035 - 财政年份:2007
- 资助金额:
$ 8.77万 - 项目类别:
相似国自然基金
开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
- 批准号:42301183
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Opportunities for Research (DOOR) in Dental Schools: Future Academic Interdisciplinary Workforce and Collaborators for the National Dental Practice-Based Research Network (PBRN)
牙科学校研究机会 (DOOR) 的发展:国家牙科实践研究网络 (PBRN) 的未来学术跨学科劳动力和合作者
- 批准号:
10755060 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Novel non-invasive approach for predicting retinopathy of prematurity in premature neonates
预测早产儿视网膜病变的新型非侵入性方法
- 批准号:
10665438 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Re-examining links between screen time, health behaviors, and executive functioning: Validating an objective measure of screen exposure in a sample of young children
重新审视屏幕时间、健康行为和执行功能之间的联系:验证幼儿样本中屏幕暴露时间的客观测量
- 批准号:
10725847 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别: