Design of precision small molecules targeting RNA repeating transcripts to manipulate and study disease biology
设计针对 RNA 重复转录本的精密小分子,以操纵和研究疾病生物学
基本信息
- 批准号:10380131
- 负责人:
- 金额:$ 138.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesAwardBase PairingBiologyChemicalsClustered Regularly Interspaced Short Palindromic RepeatsCodeDefectDementiaDiseaseEngineeringEnsureFoundationsFragile X SyndromeFundingGene SilencingGenesGenetic PolymorphismHealthHumanIn SituIntronsInvestmentsMediatingMethodsMicrosatellite RepeatsModalityNeuromuscular DiseasesOligonucleotidesOpen Reading FramesPathologyPathway interactionsPatientsPharmaceutical PreparationsRNARNA DecayResearchSiteStructureTherapeuticTissuesToxinTranscriptUntranslated RegionsWorkbasedesigndrug actionflexibilityhuman diseasein vivoinnovationmolecular recognitionnovelnucleasepreclinical developmentprogramsrecruitsmall moleculetool
项目摘要
PROJECT SUMMARY: An extraordinarily challenging problem is to develop general methods to target defective
or malfunctioning RNAs that cause disease selectively. Current therapeutic strategies to target RNAs are based
on specific sequence recognition by oligonucleotides. However, many human disorders are caused by highly
structured RNAs not readily targetable by conventional base pairing, in particular RNA repeat expansions that
cause or contribute to >30 incurable neuromuscular diseases and genetically defined dementia. Thus, allele-
specific ASOs modalities for these microsatellite disorders have been developed by targeting polymorphisms
outside of the repeating sequence. The consequences of this approach are that only patients with the
polymorphisms benefit from treatment and that an ASO has to be developed for each disease, even if caused
by the same repeating sequence. If the toxin in these diseases, the expanded repeat, could be targeted
selectively with a structure-specific small molecule, then a single modality could be a therapeutic or chemical
probe for multiple diseases and for all patients.
Over the past 14 years, we have shown that RNA structures can be targeted selectively with small molecules
in situ and in vivo, more selectively than oligonucleotides. Indeed, we have designed compounds against many
RNA repeat expansions that selectively recognize the target’s structure and rescue disease-associated
pathobiology in situ and in vivo. Further, these chemical probes have elucidated new mechanisms of disease,
including a previously unknown RNA-mediated transcriptional silencing pathway that operates in fragile X
syndrome. These studies, along with our innovative strategies to synthesize drugs at the site of disease and to
engineer small molecules with novel activities, including antisense- or CRISPR-like modes of action, lay the
foundation for our proposed research program.
Herein, we propose a comprehensive strategy to study the molecular recognition of RNA repeat expansions
by small molecules in situ and in vivo, enabling the establishment of new chemical biology frameworks to target
RNA using small molecules and the development of preclinical candidates. Our studies span many types of
repeat expansions, differing in both sequence and gene contexts (intron, untranslated region, or open reading
frame). We have devised innovative strategies to: (i) exploit the structures of RNA repeats to coax the disease-
causing RNA to synthesize its own drug; (ii) interface small molecules with natural RNA decay and QC pathways;
and (iii) recruit endogenous nuclease to the repeats with small molecules. We will not only deliver proof-of-
concept small molecules that rescue disease-associated defects in situ and in vivo, but make new discoveries
about how to drug RNA using small molecules. Our proposed work would therefore be well supported by an
R35 award, as the flexibility conferred by this award is truly necessary to ensure sustainable, long-term funding
and the investment required to develop a new code for how molecules interface with RNA in health and disease.
项目摘要:一个极具挑战性的问题是开发针对缺陷的通用方法
或选择性导致疾病的功能失常的 RNA 是当前针对 RNA 的治疗策略的基础。
寡核苷酸对特定序列的识别然而,许多人类疾病是由高度引起的。
传统碱基配对不易靶向的结构化 RNA,特别是 RNA 重复扩展
导致或促成超过 30 种无法治愈的神经肌肉疾病和遗传性痴呆。
通过针对多态性开发了针对这些微卫星疾病的特定 ASO 模式
这种方法的后果是只有具有重复序列的患者。
多态性受益于治疗,并且必须为每种疾病开发 ASO,即使是由这种疾病引起的
如果毒素在这些疾病中通过相同的重复序列扩大,就可以被靶向。
选择性地使用结构特异性的小分子,那么单一模式可以是治疗或化学药物
针对多种疾病和所有患者进行探测。
在过去的 14 年里,我们已经证明小分子可以选择性地靶向 RNA 结构
事实上,我们已经设计了针对许多化合物的化合物。
RNA 重复扩增可选择性地识别目标结构并挽救与疾病相关的疾病
此外,这些化学探针阐明了疾病的新机制,
包括以前未知的 RNA 介导的转录沉默途径,该途径在脆弱的 X 中起作用
这些研究以及我们在疾病部位合成药物和治疗的创新策略。
设计具有新颖活性的小分子,包括反义或类似 CRISPR 的作用模式,奠定了
我们拟议的研究计划的基础。
在此,我们提出了一种研究 RNA 重复扩增的分子识别的综合策略
通过小分子原位和体内,能够建立新的化学生物学框架来靶向
我们的研究涉及多种类型的 RNA 使用小分子和临床前候选药物的开发。
重复扩展,序列和基因背景(内含子、非翻译区或开放阅读)都不同
我们设计了创新策略来:(i)利用 RNA 重复结构来诱导疾病 -
(ii) 将小分子与天然 RNA 衰减和 QC 途径连接起来;
(iii) 用小分子将内源核酸酶招募到重复序列中。我们不仅会提供证明-
概念小分子可在原位和体内挽救与疾病相关的缺陷,但又取得了新发现
因此,我们提出的关于如何使用小分子对 RNA 进行药物治疗的工作将得到一个很好的支持。
R35 奖项,因为该奖项赋予的灵活性对于确保可持续的长期资助确实是必要的
以及开发新代码所需的投资,以了解分子如何在健康和疾病中与 RNA 相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew D Disney其他文献
Matthew D Disney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew D Disney', 18)}}的其他基金
RNA Targeted Drug Discovery and Development for Parkinson Disease
帕金森病的 RNA 靶向药物发现和开发
- 批准号:
10392570 - 财政年份:2021
- 资助金额:
$ 138.75万 - 项目类别:
Targeted degradation of RNAs by using small molecules
使用小分子靶向降解 RNA
- 批准号:
10374774 - 财政年份:2020
- 资助金额:
$ 138.75万 - 项目类别:
Design of precision small molecules targeting RNA repeating transcripts to manipulate and study disease biology
设计针对 RNA 重复转录本的精密小分子,以操纵和研究疾病生物学
- 批准号:
10595458 - 财政年份:2020
- 资助金额:
$ 138.75万 - 项目类别:
Targeted degradation of RNAs by using small molecules
使用小分子靶向降解 RNA
- 批准号:
10661487 - 财政年份:2020
- 资助金额:
$ 138.75万 - 项目类别:
Design of precision small molecules targeting RNA repeating transcripts to manipulate and study disease biology
设计针对 RNA 重复转录本的精密小分子,以操纵和研究疾病生物学
- 批准号:
10705569 - 财政年份:2020
- 资助金额:
$ 138.75万 - 项目类别:
Pathophysiology of genetically defined dementia and neurodegeneration: Defining therapeutic targets and pathways
基因定义的痴呆和神经变性的病理生理学:定义治疗靶点和途径
- 批准号:
10595451 - 财政年份:2017
- 资助金额:
$ 138.75万 - 项目类别:
Using a disease-affected cell to synthesize its own drug
使用受疾病影响的细胞合成自己的药物
- 批准号:
8948649 - 财政年份:2015
- 资助金额:
$ 138.75万 - 项目类别:
Using a disease-affected cell to synthesize its own drug
使用受疾病影响的细胞合成自己的药物
- 批准号:
9387054 - 财政年份:2015
- 资助金额:
$ 138.75万 - 项目类别:
Using a disease-affected cell to synthesize its own drug
使用受疾病影响的细胞合成自己的药物
- 批准号:
9149039 - 财政年份:2015
- 资助金额:
$ 138.75万 - 项目类别:
Using a disease-affected cell to synthesize its own drug
使用受疾病影响的细胞合成自己的药物
- 批准号:
9540084 - 财政年份:2015
- 资助金额:
$ 138.75万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 138.75万 - 项目类别:
From genotype to phenotype in a GWAS locus: the role of REST in atherosclerosis
GWAS 位点从基因型到表型:REST 在动脉粥样硬化中的作用
- 批准号:
10570469 - 财政年份:2023
- 资助金额:
$ 138.75万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 138.75万 - 项目类别:
Modeling PIEZO associated diseases in Caenorhabditis elegans: from genetics to mechanism
秀丽隐杆线虫 PIEZO 相关疾病建模:从遗传学到机制
- 批准号:
10866791 - 财政年份:2023
- 资助金额:
$ 138.75万 - 项目类别:
The effects of APOE genotype in homeostatic microglial function in preclinical APOE mouse model
APOE基因型对临床前APOE小鼠模型稳态小胶质细胞功能的影响
- 批准号:
10828613 - 财政年份:2023
- 资助金额:
$ 138.75万 - 项目类别: