Nanoscale structure and function of desmosomes
桥粒的纳米结构和功能
基本信息
- 批准号:10380815
- 负责人:
- 金额:$ 32.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdherens JunctionAdhesionsAdhesivesAntibodiesArchitectureAutoantibodiesBindingBiological MarkersBiophysicsBiopsy SpecimenBullaC-terminalCadherin DomainCadherinsCalciumCell AdhesionCell-Cell AdhesionCellsCellular biologyCharacteristicsComplexCore ProteinCouplesCytoskeletonDefectDehydrationDependenceDermatologicDesmosomesDevelopmentDiseaseElectronsElementsEnvironmental ProtectionEpidermisEpithelialFluorescence MicroscopyFutureGoalsGrowthHeart DiseasesHumanImageImmunoglobulin GIndividualIntermediate FilamentsLeadLifeLinkMacromolecular ComplexesMapsMeasuresMechanical StressMechanicsMediatingMethodsMicroscopyModelingMolecularMultiprotein ComplexesOpticsOrganizational ChangePRKCA genePathogenesisPemphigus VulgarisPhosphorylationPolarization MicroscopyPrimary Cell CulturesProcessProtein DynamicsProteinsRegulationResistanceResolutionSignal TransductionSkinStressStructureStructure-Activity RelationshipTertiary Protein StructureTestingTissue SampleTissuesdesmoglein IIIdesmoplakinexperimental studyextracellularhuman diseasehuman tissueinnovationinsightinterdisciplinary approachkeratinocytemutantnanoscalenovelnovel strategiespotential biomarkerskin disordertargeted treatmenttherapeutic developmenttherapeutic targettoolwound healing
项目摘要
Project Summary
The epidermis provides protection from environmental insult, dehydration and stress. Mechanical strength is
derived from robust cell-cell adhesive junctions called desmosomes is a fundamental feature of epidermal
tissue. Desmosomes are macromolecular complexes composed of desmosomal cadherins, which mediate cell-
cell adhesion, and a number of intracellular plaque proteins, including desmoplakin, which couples the complex
to the intermediate filament cytoskeleton. Notably, aberrant desmosome function can lead to severe epidermal
disorders. Pemphigus vulgaris is a potentially life-threatening skin blistering disease caused by autoantibodies
directed against the desmosomal cadherin desmoglein-3 (Dsg3) that leads to disruption of cell-cell adhesion.
Though responsible for mechanical integrity, desmosomes can switch between strong and weak states in
development and wound healing. This functional transition occurs with minimal change to the core proteins
comprising the desmosome. We hypothesize that the architecture or organization of proteins within a
desmosome drives its adhesive function. However, due to the size and molecular complexity of desmosomes
there is a lack of tools to study this structure-function relationship creating a critical barrier in this field. We will
use a multi-disciplinary approach to address this challenge and to test the hypothesis that the biophysical
organization of proteins in the desmosome provides a mechanism to regulate adhesion. We recently
developed two highly innovative and complimentary super-resolution fluorescence microscopy approaches to
study the order and organization of proteins within desmosomes. Our goal is to elucidate how the order and
organization of proteins impacts the adhesive function of desmosomes in healthy and disease states. This will
provide novel insight into the structure and function of these critical complexes. In Aim 1 we will determine the
how the organization of plaque proteins changes in different adhesive states with the goal of identifying
functionally sensitive elements and potential biomarkers. In Aim 2 we will use a live cell approach to study
mechanisms that confer ordering of desmosomal cadherins, and how this order is altered with function. Finally,
in Aim 3 we will define changes to the architecture of the desmosome induced in pemphigus vulgaris, with the
goal of facilitating development of targeted therapeutics. We will use primary human keratinocytes and human
tissue biopsy samples to address these questions. Accomplishment of these goals will provide a fundamental
understanding and framework of how protein organization and dynamics influence the adhesive function of
desmosomes in healthy and disease states.
项目概要
表皮提供保护,免受环境侵害、脱水和压力。机械强度为
源自称为桥粒的坚固的细胞与细胞粘合连接,是表皮的基本特征
组织。桥粒是由桥粒钙粘蛋白组成的大分子复合物,介导细胞-
细胞粘附和许多细胞内斑块蛋白,包括桥粒斑蛋白,它与复合物偶联
到中间丝细胞骨架。值得注意的是,异常的桥粒功能可导致严重的表皮损伤
失调。寻常型天疱疮是一种由自身抗体引起的可能危及生命的皮肤起泡疾病
针对桥粒钙粘蛋白 desmoglein-3 (Dsg3),导致细胞间粘附破坏。
虽然桥粒负责机械完整性,但它可以在强状态和弱状态之间切换
发育和伤口愈合。这种功能转变发生时核心蛋白的变化极小
包括桥粒。我们假设蛋白质的结构或组织
桥粒驱动其粘附功能。然而,由于桥粒的大小和分子复杂性
缺乏研究这种结构-功能关系的工具,在该领域造成了严重障碍。我们将
使用多学科方法来应对这一挑战并检验生物物理学的假设
桥粒中蛋白质的组织提供了调节粘附的机制。我们最近
开发了两种高度创新和互补的超分辨率荧光显微镜方法
研究桥粒内蛋白质的顺序和组织。我们的目标是阐明顺序和
蛋白质的组织影响健康和疾病状态下桥粒的粘附功能。这将
为这些关键复合体的结构和功能提供新的见解。在目标 1 中,我们将确定
斑块蛋白的组织在不同的粘附状态下如何变化,目的是识别
功能敏感元件和潜在的生物标志物。在目标 2 中,我们将使用活细胞方法进行研究
赋予桥粒钙粘蛋白排序的机制,以及这种顺序如何随着功能而改变。最后,
在目标 3 中,我们将定义寻常型天疱疮中诱导的桥粒结构的变化,其中
促进靶向治疗药物开发的目标。我们将使用原代人角质形成细胞和人
组织活检样本可以解决这些问题。这些目标的实现将为
蛋白质组织和动力学如何影响粘附功能的理解和框架
健康和疾病状态下的桥粒。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Live-Cell Total Internal Reflection Fluorescence (TIRF) Microscopy to Investigate Protein Internalization Dynamics.
活细胞全内反射荧光 (TIRF) 显微镜研究蛋白质内化动力学。
- DOI:10.1007/978-1-0716-2035-9_3
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Rao,TejeshwarC;Nawara,TomaszJ;Mattheyses,AlexaL
- 通讯作者:Mattheyses,AlexaL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexa Lynn Mattheyses其他文献
Alexa Lynn Mattheyses的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexa Lynn Mattheyses', 18)}}的其他基金
Lightsheet Microscope for the UAB High-Resolution Imaging Facility
用于 UAB 高分辨率成像设备的光片显微镜
- 批准号:
10429045 - 财政年份:2022
- 资助金额:
$ 32.34万 - 项目类别:
Molecular imaging technologies for mechanobiology
机械生物学分子成像技术
- 批准号:
10320359 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
Administrative Supplement: iLas Ring TIRF for 3D super-resolved imaging of cellular force magnitude and direction
行政补充:iLas Ring TIRF 用于细胞力大小和方向的 3D 超分辨成像
- 批准号:
10389532 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
Administrative Supplement: Summer undergraduate research:Imaging the Molecular Forces Generated by Synthetic Motors
行政补充:暑期本科生研究:合成电机产生的分子力成像
- 批准号:
10393870 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
Molecular imaging technologies for mechanobiology
机械生物学分子成像技术
- 批准号:
10091485 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
Visualizing Desmosome Structure and Dynamics by Polarized Fluorescence Microscopy
通过偏振荧光显微镜观察桥粒结构和动力学
- 批准号:
8773042 - 财政年份:2014
- 资助金额:
$ 32.34万 - 项目类别:
相似国自然基金
上皮层形态发生过程中远程机械力传导的分子作用机制
- 批准号:31900563
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Diversity Supplement: Novel Role of Nephron Epithelialization in Nuclear Signaling
多样性补充:肾单位上皮化在核信号传导中的新作用
- 批准号:
10853534 - 财政年份:2023
- 资助金额:
$ 32.34万 - 项目类别:
Physical, cellular, and molecular control of tissue fission and fusion
组织裂变和融合的物理、细胞和分子控制
- 批准号:
10724005 - 财政年份:2023
- 资助金额:
$ 32.34万 - 项目类别:
Mechanisms of KSHV-induced endothelial cell loss of contact inhibition of proliferation
KSHV诱导内皮细胞失去接触抑制增殖的机制
- 批准号:
10762813 - 财政年份:2023
- 资助金额:
$ 32.34万 - 项目类别:
Investigation of Armadillo/ß-catenin Mechanisms Influencing Nociceptive Sensitivity in Drosophila
影响果蝇伤害感受敏感性的犰狳/α-连环蛋白机制的研究
- 批准号:
10653377 - 财政年份:2023
- 资助金额:
$ 32.34万 - 项目类别: