Predicting Relapse at the Time of Diagnosis in Acute Lymphoblastic Leukemia
急性淋巴细胞白血病诊断时预测复发
基本信息
- 批准号:10380688
- 负责人:
- 金额:$ 60.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Lymphocytic LeukemiaAddressAdoptionAutomobile DrivingB-Cell Acute Lymphoblastic LeukemiaB-LymphocytesBiologyCREB1 geneCancer EtiologyCause of DeathCell AdhesionCellsChildChildhood LeukemiaClassificationClinicalClinical TrialsComplexDNA Sequence AlterationDataDiagnosisDiagnosticDiseaseFutureGene MutationGeneticGenomicsGoalsImmunotherapeutic agentImmunotherapyIncidenceIndividualLeukemic CellMachine LearningMeasurementMeasuresMedicineMembrane ProteinsMethodsModelingMolecularMutationNatureOncogenicPathway interactionsPatientsPerformancePhenotypePopulationProteinsProteomicsPublishingRecurrenceRecurrent diseaseRelapseRiskRisk AssessmentSYK geneSamplingSignal TransductionSurfaceTherapeuticTimeWorkbasechemotherapyclinical implementationclinical riskcohortdata-driven modeldifferential expressionexome sequencingimprovedindividual patientinnovationleukemiamachine learning modelmachine learning predictionmortalitymultimodalitymutational statusnovelprecision medicinepredictive modelingpreventprospectiveprospective testprototyperelapse predictionrelapse riskresponserisk predictionrisk prediction modelstandard of caretargeted treatmenttherapeutic targettreatment responsetreatment strategy
项目摘要
PROJECT SUMMARY
Relapse is the major cause of cancer related mortality in children with leukemia. Despite improvements
in overall survival for children with B-cell progenitor acute lymphoblastic leukemia (ALL), for the 600 patients
who will relapse each year, half will die of their disease. The high mortality of patients who relapse underscores
the need for improved risk prediction and treatment strategies to prevent recurrent leukemia. Current
approaches to relapse prediction are limited by insufficient accuracy, delayed prediction and the inability to
make actionable treatment adjustments based on prediction information. To address these limitations, we
applied a single-cell, high-parameter proteomic approach to ALL patient samples at the time of diagnosis,
accurately predicting future relapse based on the presence of pre-B cells with activated signaling. This
approach was 38% more accurate than standard of care relapse prediction methods. We propose that
identifying relapse-predictive cells in ALL at the time of diagnosis using their distinguishing proteomic
and genetic features will result in a clinical risk prediction model that is accurate, immediate, and
actionable. This approach to relapse prediction will change the clinical paradigm of relapse risk in ALL to
reduce the incidence of relapse itself.
Using large multi-institutional, multimodal cohorts of molecularly and clinically annotated diagnostic
patient samples, we will apply deep proteomic approaches to identify surface proteins uniquely expressed on
relapse predictive pre-B cells enabling direct identification in a diagnosis sample. We will determine how
genomic mutations associate with the presence of relapse predictive cells and examine their genomic
mutational burden using single-cell exome sequencing. Finally, building on our data-driven, machine learning
approaches, we will construct a diagnostic relapse predictor that is more accurate than standard of care
models while informing on leukemia biology and targeted therapeutic options for patients at risk. This will
enable a more precise approach to patient classification and treatment, reducing the number of children facing
relapse and moving closer to precision medicine for children with ALL.
项目概要
复发是白血病儿童癌症相关死亡的主要原因。尽管有所改进
600 名 B 细胞祖细胞急性淋巴细胞白血病 (ALL) 儿童的总生存率
每年复发的人中,有一半会死于该病。复发患者的高死亡率凸显了
需要改进风险预测和治疗策略以预防复发性白血病。当前的
复发预测方法受到准确性不足、预测延迟和无法
根据预测信息做出可行的治疗调整。为了解决这些限制,我们
在诊断时对所有患者样本应用单细胞、高参数蛋白质组学方法,
根据具有激活信号传导的前 B 细胞的存在,准确预测未来的复发。这
该方法比标准护理复发预测方法准确 38%。我们建议
在诊断时使用其独特的蛋白质组学识别 ALL 中的复发预测细胞
和遗传特征将产生准确、即时和可靠的临床风险预测模型
可行的。这种复发预测方法将改变 ALL 复发风险的临床范式
减少复发本身的发生率。
使用大型多机构、多模式队列的分子和临床注释诊断
患者样本,我们将应用深层蛋白质组学方法来识别独特表达的表面蛋白
复发预测前 B 细胞能够在诊断样本中直接识别。我们将决定如何
基因组突变与复发预测细胞的存在相关并检查其基因组
使用单细胞外显子组测序测定突变负荷。最后,以我们的数据驱动的机器学习为基础
方法,我们将构建一个比标准护理更准确的诊断复发预测器
模型,同时提供有关白血病生物学和针对高危患者的针对性治疗方案的信息。这将
实现更精确的患者分类和治疗方法,减少面临的儿童数量
复发并更接近针对 ALL 儿童的精准医疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kara Lynn Davis其他文献
Kara Lynn Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kara Lynn Davis', 18)}}的其他基金
Dissecting Single-cell Response or Resistance to Novel Combination Therapy in AML using Mass Cytometry
使用质谱流式细胞仪剖析 AML 中单细胞对新型联合疗法的反应或耐药性
- 批准号:
10383056 - 财政年份:2021
- 资助金额:
$ 60.4万 - 项目类别:
Predicting Relapse at the Time of Diagnosis in Acute Lymphoblastic Leukemia
急性淋巴细胞白血病诊断时预测复发
- 批准号:
10591509 - 财政年份:2021
- 资助金额:
$ 60.4万 - 项目类别:
Predicting Relapse at the Time of Diagnosis in Acute Lymphoblastic Leukemia
急性淋巴细胞白血病诊断时预测复发
- 批准号:
10210902 - 财政年份:2021
- 资助金额:
$ 60.4万 - 项目类别:
Single-cell High-dimensional Characterization of the Bone Marrow Microenvironment in Health and Disease
健康和疾病中骨髓微环境的单细胞高维表征
- 批准号:
9372908 - 财政年份:2017
- 资助金额:
$ 60.4万 - 项目类别:
Single-cell High-dimensional Characterization of the Bone Marrow Microenvironment in Health and Disease
健康和疾病中骨髓微环境的单细胞高维表征
- 批准号:
9524788 - 财政年份:2017
- 资助金额:
$ 60.4万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Ethnic disparities in methotrexate neurotoxicity among children and adolescents with ALL
患有 ALL 的儿童和青少年中甲氨蝶呤神经毒性的种族差异
- 批准号:
10289496 - 财政年份:2021
- 资助金额:
$ 60.4万 - 项目类别:
Predicting Relapse at the Time of Diagnosis in Acute Lymphoblastic Leukemia
急性淋巴细胞白血病诊断时预测复发
- 批准号:
10591509 - 财政年份:2021
- 资助金额:
$ 60.4万 - 项目类别:
Ethnic disparities in methotrexate neurotoxicity among children and adolescents with ALL
患有 ALL 的儿童和青少年中甲氨蝶呤神经毒性的种族差异
- 批准号:
10683990 - 财政年份:2021
- 资助金额:
$ 60.4万 - 项目类别:
Ethnic disparities in methotrexate neurotoxicity among children and adolescents with ALL
患有 ALL 的儿童和青少年中甲氨蝶呤神经毒性的种族差异
- 批准号:
10472703 - 财政年份:2021
- 资助金额:
$ 60.4万 - 项目类别:
Predicting Relapse at the Time of Diagnosis in Acute Lymphoblastic Leukemia
急性淋巴细胞白血病诊断时预测复发
- 批准号:
10210902 - 财政年份:2021
- 资助金额:
$ 60.4万 - 项目类别: