Measuring allele and isoform-specific RBP binding to improve predictive models of RNA splicing
测量等位基因和亚型特异性 RBP 结合以改进 RNA 剪接的预测模型
基本信息
- 批准号:10377311
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAffectAllelesAlternative SplicingAutomobile DrivingBindingBinding ProteinsBioinformaticsBiological AssayBiologyCategoriesCell LineCell physiologyCellsCodeComplementComplexComputer ModelsDNA sequencingDataDefectDevelopmentDiseaseDoctor of PhilosophyEnsureEventExonsFellowshipFibroblastsFoundationsFractionationFutureGene Expression RegulationGene ProteinsGenesGeneticGenetic TranscriptionGenetic studyGenomic SegmentGenomicsGenotype-Tissue Expression ProjectGoalsHigh-Throughput Nucleotide SequencingHumanIntronsKnowledgeLeadLearningLinkMachine LearningMalignant NeoplasmsMeasuresMediatingMentorsMessenger RNAMethodsModelingMolecularMolecular BiologyMyopathyNucleotidesOutcomeOutputPatternPhenotypePlayPrincipal InvestigatorProcessProtein IsoformsProtein SplicingProteinsQuantitative Trait LociRNARNA BindingRNA ProcessingRNA SequencesRNA SplicingRNA metabolismRNA-Binding ProteinsRegulationResearch TrainingRibonucleic Acid Regulatory SequencesRoleSiteSystemTissuesTrainingTranscriptTranslationsUntranslated RNAVariantWorkcareer developmentcausal variantcell typeconvolutional neural networkdifferential expressiondisease phenotypeexperimental studygenetic regulatory proteingenetic variantimprovedknock-downmRNA Precursormachine learning predictionmolecular phenotypenervous system disordernovel strategiesnucleasepredictive modelingprotein expressionprotein functionrecruitskillsstatistical and machine learningtraittranscriptome sequencing
项目摘要
PROJECT SUMMARY
Alternative splicing (AS) is a fundamental cellular process that regulates 95% of multi-exon genes to diversify
protein output and define cell-type specific functions. Both constitutive splicing and AS are controlled by
combinations of cis-acting pre-messenger RNA sequences (pre-mRNA) and trans-acting RNA-binding proteins
(RBPs). Therefore, defects in splicing regulatory RNA sequence or RBPs can be highly disruptive to basic cellular
activities and often lead to disease, especially neurological and muscular disorders and cancer. While the
constitutive splicing code is well established, the AS code is more complicated and, thus, poorly understood.
This proposal integrates multiple cutting-edge approaches to take an RBP-centric view of AS to study both cis
genetic variants and trans RBP expression effects on RBP binding and splicing outcome. While thousands of
non-coding genetic variants are associated with splicing variation, and are thus termed putative splicing
quantitative trait loci (sQTLs), the causal variants and their molecular effects, such as RBP binding, are largely
unclear. Aim 1 will address this gap by integrating RBP-focused experiments, allele-specific genomics, and state-
of-the-art machine learning predictive models to characterize an important category of functional, cis non-coding
variants that alter RBP binding. Importantly, I will take a unique approach to include these allele-specific RBP
binding data as additional training data for our Convolutional Neural Net model. Model output is expected to
much more accurately predict functional RBP binding effects of even a single nucleotide change in sequence,
enabling improved interpretation of sQTLs. In addition to genetic variant effects, changes in RBP expression can
have amplified downstream effects on RNA splicing. Interestingly, ~86% of RBP genes can be expressed as
more than one splice isoform, but most studies to date have ignored RBP isoform-specific abundance and
function. Aim 2 will provide foundational experiments to understand differential RBP isoform effects by using a
novel approach to knockdown RBP isoforms by targeting Cas13 to unique exon junctions. Data from downstream
assays that assess changes in RBP binding, splicing, and RNA localization will be integrated to construct the
most comprehensive RBP regulatory networks to date. Results from both aims are essential to mechanistically
link RNA sequence and RBP binding to splicing outcome and, ultimately, to phenotype and disease.
My long-term goal is to become a principal investigator, where I will continue to leverage molecular biology,
machine learning, and statistical genetics to answer unique questions about RNA-mediated associations
between non-coding sequence and cellular and disease phenotype. The research and training plans proposed
here are strategically tailored to provide ample opportunities to learn and apply machine learning and statistical
genetics methods that complement my former PhD training in molecular biology and genomics. My sponsor, co-
sponsor, and collaborators at the NYGC are committed to providing the scientific expertise, computational
training, and career development mentoring to ensure the successful achievement of my goals.
项目概要
选择性剪接 (AS) 是一种基本的细胞过程,可调节 95% 的多外显子基因以使其多样化
蛋白质输出并定义细胞类型的特定功能。本构剪接和 AS 均由
顺式作用前信使 RNA 序列 (pre-mRNA) 和反式作用 RNA 结合蛋白的组合
(RBP)。因此,调控RNA序列或RBP的剪接缺陷可能对基本细胞功能造成高度破坏。
活动并常常导致疾病,特别是神经和肌肉疾病以及癌症。虽然
本构剪接代码已经很成熟,但 AS 代码更复杂,因此理解甚少。
该提案整合了多种前沿方法,以 RBP 为中心的 AS 观点来研究顺式和顺式
遗传变异和反式 RBP 表达对 RBP 结合和剪接结果的影响。虽然成千上万
非编码遗传变异与剪接变异相关,因此被称为推定剪接
数量性状位点 (sQTL)、因果变异及其分子效应(例如 RBP 结合)很大程度上取决于
不清楚。目标 1 将通过整合以 RBP 为中心的实验、等位基因特异性基因组学和状态来解决这一差距。
最先进的机器学习预测模型来表征功能性、顺式非编码的重要类别
改变 RBP 结合的变体。重要的是,我将采取独特的方法来包含这些等位基因特异性 RBP
绑定数据作为我们的卷积神经网络模型的附加训练数据。模型输出预计为
更准确地预测即使是序列中单个核苷酸变化的功能性 RBP 结合效应,
改进对 sQTL 的解释。除了遗传变异效应外,RBP 表达的变化还可以
对 RNA 剪接具有放大的下游效应。有趣的是,约 86% 的 RBP 基因可以表达为
不止一种剪接异构体,但迄今为止大多数研究都忽略了 RBP 异构体特异性丰度和
功能。目标 2 将提供基础实验,通过使用
通过将 Cas13 靶向独特的外显子连接来敲低 RBP 同工型的新方法。来自下游的数据
评估 RBP 结合、剪接和 RNA 定位变化的测定将被整合以构建
迄今为止最全面的 RBP 监管网络。这两个目标的结果对于机械地来说都是至关重要的
将 RNA 序列和 RBP 结合与剪接结果联系起来,并最终与表型和疾病联系起来。
我的长期目标是成为一名首席研究员,我将继续利用分子生物学,
机器学习和统计遗传学来回答有关 RNA 介导的关联的独特问题
非编码序列与细胞和疾病表型之间的关系。拟议的研究和培训计划
这里经过战略性定制,为学习和应用机器学习和统计提供充足的机会
遗传学方法补充了我之前在分子生物学和基因组学方面的博士学位训练。我的赞助商、合作者
NYGC 的赞助商和合作者致力于提供科学专业知识、计算
培训和职业发展指导,以确保我成功实现目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan Schertzer其他文献
Megan Schertzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Programs for the Training and Advancement of the Next GENeration of Native Researchers in Genetics, Ethics and Society
下一代本土遗传学、伦理学和社会研究人员的培训和提升计划
- 批准号:
10841760 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Developing a U.S. National Cohort to Improve Virologic Suppression among Stimulant-using Men Living with HIV.
建立美国国家队列以改善使用兴奋剂的艾滋病毒男性感染者的病毒抑制。
- 批准号:
10675863 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
- 批准号:
10585123 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别: