Data-driven Head Motion Correction in PET Imaging Using Deep Learning
使用深度学习在 PET 成像中进行数据驱动的头部运动校正
基本信息
- 批准号:10376855
- 负责人:
- 金额:$ 20.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAlzheimer&aposs DiseaseAnatomyAnxiety DisordersBehaviorBindingBiomedical ResearchBrainBrain imagingBrain scanCigaretteClinicalClinical ResearchComputer softwareCustomDataData AnalysesDevelopmentDevicesEffect Modifiers (Epidemiology)EvaluationEventFundingGoldHeadHead MovementsHourHumanHuman bodyImageIndividualLearningMeasurementMeasuresMethodologyMethodsModelingMorphologic artifactsMotionMovementNeurodegenerative DisordersParkinson DiseasePathologic ProcessesPatientsPerformancePhasePhysiological ProcessesPositron-Emission TomographyResearchResearch PersonnelScanningSmokingSynapsesSystemTestingTimeTracerTrainingVariantWorkbaseclinical practiceclinical translationdeep learningdeep neural networkdensitydesigneffectiveness evaluationfluorodeoxyglucoseimage reconstructionimaging modalityimprovedinnovationinterestneural networknovelpsychologicreconstructionresearch facilitysimulationstatisticstool
项目摘要
Project Summary
Positron-emission tomography (PET) is an imaging modality that allows clinicians and researchers to study the
physiological or pathological processes of the human body, and in particular the brain via the use of specific
tracers. For brain PET imaging, patient head movement during scanning presents a challenge for accurate
PET image reconstruction and subsequent quantitative analysis. Problems due to head motion are
exacerbated by the long duration of the scans, with scan times commonly over one hour. Furthermore, some
PET studies specifically involve subjects that either have trouble staying still due to psychological variations,
e.g. patients with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, or
psychological variations, e.g. subjects with anxiety disorders, or are required to participate in tasks that involve
movement, e.g. smoking cigarettes while scanning. In brain scans, the average head motion can vary from 7
mm in clinical scans to triple this amount for longer research scans. Quantitatively, a 5 mm head motion can
produce biases of up to ~35% in regional intensities and ∼15% in volume of distribution estimates, which could
much larger than the difference observed in regional intensities or binding potential that distinguish different
demographic groups being studied. The ability to track and correct head motion, therefore, would be of high
utility in both clinical and research PET studies. In the past, many motion correction methods have been
proposed. However, except for hardware-based approaches, there has been no method that can track frequent
head motion on-the-fly during the PET acquisition. Hardware-based approaches are not readily available for
clinical translation or used by other research facilities due to highly-customized software/hardware setup. To
address this challenge, we propose to develop a data-driven methodology using deep learning to track and
estimate rigid head motion using PET raw data, and incorporate both tracer type and time as conditional
variables into this deep neural network design in order to handle diverse PET tracer types and their dynamic
behavior. Overall, these solutions will provide for a data-driven motion estimation methodology to improve the
quality of PET imaging. Specifically, we will start with the development and testing of our methodology for rigid
head motion estimation using single-tracer PET raw data. Then we will perform evaluation of our multi-tracer
motion estimation methodology applied to real PET data with a diverse range of tracers. Finally, in the
exploratory phase, we will integrate time-of-flight information into deep learning-based motion prediction. The
significance of this proposal is that it will allow for improved quality of PET imaging in real time and potentially
allow for its use in clinical PET systems that do not have special motion tracking hardware. This work will serve
as a first step towards developing data-driven motion estimation algorithms for full body PET imaging. The
innovation lies in the development of what is a data-driven solution to the problem of real time motion
estimation.
项目摘要
正电子发射断层扫描(PET)是一种成像方式,使临床医生和研究人员能够研究
人体的物理或病理过程,尤其是通过使用特定的大脑
示踪剂。对于脑宠物成像,扫描过程中的患者头部移动提出了一个挑战,以便准确
PET图像重建和随后的定量分析。由于头部运动引起的问题是
由于扫描的长时间持续时间,扫描时间通常超过一个小时,这加剧了。此外,有些
宠物研究专门涉及受试者,这些受试者要么由于心理差异而静止不动,
例如神经退行性疾病的患者,例如阿尔茨海默氏病和帕金森氏病,或
心理变化,例如患有焦虑症的受试者,或要求参与涉及的任务
运动,例如扫描时吸烟。在脑部扫描中,平均头部运动可以从7个变化
临床扫描中的MM以进行更长的研究扫描,以进行三倍。定量,5毫米头运动可以
在区域强度中产生高达约35%的偏见,分配估计量〜15%,这可能
比区域强度或结合潜力所观察到的差异大得多
人口组正在研究。因此,跟踪和纠正头部运动的能力将很高
临床和研究宠物研究的实用程序。过去,许多运动校正方法已经
建议的。但是,除了基于硬件的方法外,没有方法可以跟踪频率
宠物收购期间的脸部运动。基于硬件的方法不容易获得
临床翻译或由于高度定制的软件/硬件设置而被其他研究设施使用。到
应对这一挑战,我们建议使用深度学习以跟踪和
使用PET原始数据估算刚性头运动,并将示踪剂类型和时间纳入条件
变量到这种深度神经网络设计中,以处理潜水员宠物示踪剂类型及其动态
行为。总体而言,这些解决方案将为数据驱动的运动估计方法提供改善
宠物成像的质量。具体来说,我们将从对刚性的方法的开发和测试开始
使用单个跟踪器PET原始数据进行头部运动估算。然后,我们将对我们的多追踪器进行评估
运动估计方法将用于潜水员示踪剂范围的真实PET数据应用。最后,在
探索性阶段,我们将将飞行时间信息整合到基于深度学习的运动预测中。这
该提案的意义是,它将允许实时提高宠物成像的质量
允许其在没有特殊运动跟踪硬件的临床宠物系统中使用。这项工作将服务
作为开发数据驱动的运动估计算法的第一步,用于全身PET成像。这
创新在于开发什么是数据驱动的实时运动问题的解决方案
估计。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supervised Deep Learning for Head Motion Correction in PET.
PET 中头部运动校正的监督深度学习。
- DOI:10.1007/978-3-031-16440-8_19
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zeng,Tianyi;Zhang,Jiazhen;Revilla,Enette;Lieffrig,EléonoreV;Fang,Xi;Lu,Yihuan;Onofrey,JohnA
- 通讯作者:Onofrey,JohnA
MULTI-TASK DEEP LEARNING AND UNCERTAINTY ESTIMATION FOR PET HEAD MOTION CORRECTION.
宠物头部运动校正的多任务深度学习和不确定性估计。
- DOI:10.1109/isbi53787.2023.10230791
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lieffrig,EléonoreV;Zeng,Tianyi;Zhang,Jiazhen;Fontaine,Kathryn;Fang,Xi;Revilla,Enette;Lu,Yihuan;Onofrey,JohnA
- 通讯作者:Onofrey,JohnA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Aaron Onofrey其他文献
John Aaron Onofrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Aaron Onofrey', 18)}}的其他基金
Image Analysis Tools for mpMRI Prostate Cancer Diagnosis Using PI-RADS
使用 PI-RADS 进行 mpMRI 前列腺癌诊断的图像分析工具
- 批准号:
10256757 - 财政年份:2018
- 资助金额:
$ 20.94万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 20.94万 - 项目类别: