Accurate Molecular Decision Making during Protein Biogenesis
蛋白质生物合成过程中准确的分子决策
基本信息
- 批准号:10372995
- 负责人:
- 金额:$ 97.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseBacteriaBiochemicalBiogenesisBiophysical ProcessBiophysicsCellsClientCrowdingDecision MakingDiseaseEnsureEnvironmentEnzymesEukaryotic CellExcisionGenerationsGoalsGrantIndividualInvestigationKnowledgeMaintenanceMediatingMembraneMembrane ProteinsMethionineModelingMolecularMolecular ChaperonesN-terminalPathologyPathway interactionsPhysiologyPlant RootsProcessProteinsProteomeReagentRegulationResearchResolutionRibosomesSignal Recognition ParticleSystemTailTimeTranslationsTriagedesignexperimental studyin vivoinsightpreventprogramsproteostasisspatiotemporaltargeted deliverytool
项目摘要
Project Summary: Accurate Molecular Decision Making during Protein Biogenesis
Accurate protein biogenesis is essential for the generation and maintenance of a functional
proteome. Our long term goal is to understand the molecular mechanisms by which diverse
protein biogenesis pathways in the cell accurately select nascent protein substrates and ensure
their correct folding, localization, and maturation. Two major components define our research
program in this grant cycle.
First, we will use a combination of biochemical, biophysical, and in vivo experiments to decipher
the mechanisms by which nascent proteins emerging from the ribosome are selected and
processed by ribosome-associated protein biogenesis factors (RPBs) in the crowded space of
the ribosome tunnel exit. These studies will include a new co-translational membrane protein
targeting pathway mediated by SecA, enzymes mediating N-terminal methionine excision on
nascent proteins in bacteria, and co-translational protein targeting mediated by SRP in the
mammalian system. In addition to studying the biochemical and biophysical mechanisms of the
individual protein biogenesis pathways, we will also elucidate how each of these factors
coordinates with other RPBs in space and time during ongoing translation, and how this
coordination reshapes the efficiency and fidelity of the individual pathways.
Second, we will decipher the mechanisms by which aggregation-prone membrane proteins are
effectively protected and facilely guided to the target membrane during their post-translational
targeting. These studies will use two membrane protein biogenesis pathways as models: (i) an
ATP-independent chaperone cpSRP43, which allows us to decipher, at biophysical resolution,
the molecular mechanisms by which a small chaperone effectively protects multi-pass
membrane protein clients and achieves spatiotemporal regulation of its client interactions in the
absence of ATPase cycles or cochaperones; (ii) the guided-entry of tail-anchored proteins (GET)
pathway, which provides an excellent system to decipher how a multi-component Hsp70-
cochaperone cascade protects, funnels, and triages nascent membrane proteins during their
targeted delivery. Investigation of the GET pathway will also allow us to gain insights into the
design and organizational principles of analogous chaperone networks in the cell.
The proposed experiments will not only generate high resolution understandings of the
individual protein biogenesis pathways, but also establish valuable tools, reagents to explore the
action of other protein biogenesis machineries. Most importantly, this research will generate
important conceptual frameworks to understand how nascent proteins are accurately selected
into their appropriate biogenesis pathways in the crowded cytosolic environment.
项目摘要:蛋白质生物合成过程中准确的分子决策
准确的蛋白质生物发生对于功能性蛋白质的产生和维持至关重要
蛋白质组。我们的长期目标是了解不同的分子机制
细胞中的蛋白质生物发生途径准确选择新生蛋白质底物并确保
它们的正确折叠、定位和成熟。我们的研究有两个主要组成部分
本拨款周期中的计划。
首先,我们将结合生物化学、生物物理和体内实验来破译
选择从核糖体中出现的新生蛋白质的机制
由核糖体相关蛋白生物发生因子(RPB)在拥挤的空间中加工
核糖体隧道出口。这些研究将包括一种新的共翻译膜蛋白
SecA介导的靶向途径,介导N末端甲硫氨酸切除的酶
细菌中的新生蛋白,以及 SRP 介导的共翻译蛋白靶向
哺乳动物系统。除了研究其生化和生物物理机制外
个体蛋白质生物发生途径,我们还将阐明每个因素如何
在正在进行的翻译过程中与其他 RPB 在空间和时间上进行协调,以及如何协调
协调重塑了各个路径的效率和保真度。
其次,我们将破译易于聚集的膜蛋白的机制
在翻译后过程中得到有效保护并轻松引导至目标膜
瞄准。这些研究将使用两种膜蛋白生物发生途径作为模型:(i)
ATP 独立伴侣 cpSRP43,它使我们能够以生物物理分辨率破译,
小伴侣有效保护多通道的分子机制
膜蛋白客户并实现其客户相互作用的时空调节
缺乏 ATP 酶循环或辅助伴侣; (ii) 尾部锚定蛋白的引导进入(GET)
途径,它提供了一个出色的系统来破译多组分 Hsp70-
辅伴侣级联在新生膜蛋白的过程中保护、漏斗和分类
有针对性的交付。对 GET 途径的研究也将使我们能够深入了解
细胞中类似伴侣网络的设计和组织原则。
所提出的实验不仅将产生对
单个蛋白质的生物发生途径,同时还建立了有价值的工具、试剂来探索
其他蛋白质生物发生机制的作用。最重要的是,这项研究将产生
了解如何准确选择新生蛋白质的重要概念框架
在拥挤的细胞质环境中进入适当的生物发生途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shu-ou Shan其他文献
Shu-ou Shan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shu-ou Shan', 18)}}的其他基金
Tailor-Made Molecular Chaperones to Target Protein Misfolding
针对蛋白质错误折叠的定制分子伴侣
- 批准号:
10717818 - 财政年份:2023
- 资助金额:
$ 97.03万 - 项目类别:
Accurate Molecular Decision Making during Protein Biogenesis
蛋白质生物合成过程中准确的分子决策
- 批准号:
10542321 - 财政年份:2020
- 资助金额:
$ 97.03万 - 项目类别:
Accurate Molecular Decision Making during Protein Biogenesis
蛋白质生物合成过程中准确的分子决策
- 批准号:
10593924 - 财政年份:2020
- 资助金额:
$ 97.03万 - 项目类别:
Accurate Molecular Decision Making During Protein Biogenesis
蛋白质生物合成过程中准确的分子决策
- 批准号:
10792082 - 财政年份:2020
- 资助金额:
$ 97.03万 - 项目类别:
Molecular mechanisms of post-translational targeting of tail-anchored proteins.
尾锚定蛋白翻译后靶向的分子机制。
- 批准号:
8762368 - 财政年份:2014
- 资助金额:
$ 97.03万 - 项目类别:
Molecular mechanisms of post-translational targeting of tail-anchored proteins.
尾锚定蛋白翻译后靶向的分子机制。
- 批准号:
9314591 - 财政年份:2014
- 资助金额:
$ 97.03万 - 项目类别:
Molecular Mechanism of Protein Targeting by the Signal Recognition Particle
信号识别粒子靶向蛋白质的分子机制
- 批准号:
8731245 - 财政年份:2007
- 资助金额:
$ 97.03万 - 项目类别:
Molecular Mechanism of Protein Targeting by the Signal Recognition Particle
信号识别粒子靶向蛋白质的分子机制
- 批准号:
8144251 - 财政年份:2007
- 资助金额:
$ 97.03万 - 项目类别:
Molecular Mechanism of Protein Targeting by the Signal Recognition Particle
信号识别粒子靶向蛋白质的分子机制
- 批准号:
7923876 - 财政年份:2007
- 资助金额:
$ 97.03万 - 项目类别:
Molecular Mechanism of Protein Targeting by the Signal Recognition Particle
信号识别粒子靶向蛋白质的分子机制
- 批准号:
8373184 - 财政年份:2007
- 资助金额:
$ 97.03万 - 项目类别:
相似国自然基金
新型细菌色氨酸羟化酶家族的酶学表征、生化机理与应用研究
- 批准号:32370051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化能自养硫氧化细菌介导的硫氧化–固氮耦合反应驱动机制及生态效应研究
- 批准号:91951118
- 批准年份:2019
- 资助金额:77.0 万元
- 项目类别:重大研究计划
细菌去除短链氯化石蜡的加压增效作用机制研究
- 批准号:21808200
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
海洋细菌驱动重要有机氮氧化三甲胺(TMAO)生物地球化学循环的生化过程与分子机制
- 批准号:91851205
- 批准年份:2018
- 资助金额:280.0 万元
- 项目类别:重大研究计划
基于C-H活化策略的海洋二酮哌嗪的衍生化及其细菌群体感应信号传导
- 批准号:41766006
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The role of cardiolipin in the biogenesis of the Gram-negative bacterial cell envelope
心磷脂在革兰氏阴性细菌细胞包膜生物发生中的作用
- 批准号:
10731444 - 财政年份:2023
- 资助金额:
$ 97.03万 - 项目类别:
Mechanism and Evolutionary Design of DNA Polymerase Clamp Loaders.
DNA 聚合酶夹钳装载机的机制和进化设计。
- 批准号:
10587243 - 财政年份:2023
- 资助金额:
$ 97.03万 - 项目类别:
The role of a Clostridioides difficile P-type ATPase in ferrosome formation and its impact on cellular physiology and pathogenesis
艰难梭菌 P 型 ATP 酶在铁体形成中的作用及其对细胞生理学和发病机制的影响
- 批准号:
10428260 - 财政年份:2022
- 资助金额:
$ 97.03万 - 项目类别:
Molecular Mechanisms of The Human Mitochondrial ABC Transporter ABCB10
人类线粒体 ABC 转运蛋白 ABCB10 的分子机制
- 批准号:
10596638 - 财政年份:2022
- 资助金额:
$ 97.03万 - 项目类别:
Staphylococcus aureus Type 7b Secretion System assembly and regulation
金黄色葡萄球菌 7b 型分泌系统的组装和调节
- 批准号:
10507394 - 财政年份:2022
- 资助金额:
$ 97.03万 - 项目类别: