Robust, high-throughput identification of RNA processing regulators and regulatory networks genome-wide
对全基因组 RNA 加工调节因子和调节网络进行稳健、高通量的鉴定
基本信息
- 批准号:10364689
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-06 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlternative SplicingAmyotrophic Lateral SclerosisAntibodiesBindingBinding ProteinsBinding SitesBiological ModelsBiotechnologyCRISPR screenCardiac MyocytesCell Culture TechniquesCell Differentiation processCellsCodeComputational BiologyComputing MethodologiesCoupledDNA BindingDNA Sequence AlterationDataData SetDevelopmentDiseaseEctodermElementsEndodermEnvironmentEventFacultyGenetic TranscriptionGenetic VariationGenomicsHigh-Throughput Nucleotide SequencingHumanImmunoprecipitationInstitutesIslets of LangerhansLocationMentorsMesodermMethodologyMethodsMolecularMotor NeuronsMutationPhasePhenotypePlayPositioning AttributeProteinsRNARNA ComputationsRNA ProcessingRNA StabilityRNA-Binding ProteinsRegulationResearchResearch InstituteResearch PersonnelResourcesRoleSamplingSpinal Muscular AtrophySystemTechniquesTissue SampleTissuesTrainingTranslatingTranslationsUntranslated RNAWorkbiological systemscancer typecell typecrosslinkdifferential expressionexperimental studygenome-widehuman diseaseimprovedin vivoinduced pluripotent stem cellinterestknock-downmRNA Precursoroverexpressionprogramsprotein profilingstem cellstranscriptome
项目摘要
PROJECT SUMMARY
RNA binding proteins (RBPs) bind to non-coding, pre-, and mature RNA within the cell to regulate each
step of RNA processing, including pre-mRNA alternative splicing, RNA stability and localization, and control of
translation. It has become clear that altered RNA processing plays critical roles in nearly every studied
biological system, and recent work has suggest that a substantial fraction of disease-causing genetic mutations
affect RNA processing, including mutations that cause familial Spinal Muscular Atrophy, Amyotrophic Lateral
Sclerosis, and multiple cancer types. Mechanistic understanding of the downstream regulatory network of an
RBP is essential to studying and, ultimately, ameliorating these diseases; however, there remains a need for
robust, unbiased genome-wide methods to characterize RBP targets and regulators. Building upon our recent
development of enhanced crosslinking and immunoprecipitation (eCLIP), I propose to extend this work in three
unique directions that each contribute to our ability to gain global, high-quality views of RNA processing
transcriptome-wide:
1. Develop low-sample and tag-eCLIP methods for highly parallelizable in vivo profiling of RBPs in low
input samples, and for RBPs which lack high-quality native antibodies for immunoprecipitation.
2. Show that transcriptome profiling coupled with RBP target identification can identify critical
regulators of a biological system, using differentiation of human induced pluripotent stem cells as a
model system
3. Develop methods for unbiased identification of upstream functional regulators of non-coding RNAs
and RNA processing in an RNA-centric manner.
My extensive expertise in genomics, computational biology, and the study of DNA and RNA binding
proteins makes me an ideal candidate to perform the research proposed above. These three aims take
different approaches that will coalesce in a robust ability to begin either with an RBP of interest and identify its
regulated targets, or begin with an RNA of interest and identify regulator RBPs, which will serve as the basis
for my independent research program as an independent faculty candidate. The Yeo lab at UCSD is an ideal
environment to perform this research and complete my training towards pursuit of an independent academic
faculty position, as it has consistently been a leader in developing both experimental and computational
methods to characterize RBP regulation. Additionally, the location of the Yeo lab proximal to outstanding
researchers at UCSD, the Salk Institute, and other research institutes and biotechnology companies in La Jolla
will provide specific hands-on experimental training in stem cell culture and differentiation, as well as ample
opportunities for mentored training in performing research and developing an independent research program.
项目概要
RNA 结合蛋白 (RBP) 与细胞内的非编码 RNA、前 RNA 和成熟 RNA 结合,调节每个 RNA
RNA 加工步骤,包括前 mRNA 选择性剪接、RNA 稳定性和定位以及控制
翻译。很明显,RNA 加工的改变在几乎所有研究中都发挥着关键作用。
生物系统,最近的研究表明,很大一部分致病基因突变
影响 RNA 加工,包括导致家族性脊髓性肌萎缩症、肌萎缩侧索硬化症的突变
硬化症和多种癌症类型。对下游监管网络的机制理解
RBP 对于研究并最终改善这些疾病至关重要;然而,仍然需要
稳健、公正的全基因组方法来表征 RBP 靶标和调节因子。基于我们最近的
增强交联和免疫沉淀(eCLIP)的发展,我建议将这项工作扩展到三个方面
每个独特的方向都有助于我们获得 RNA 加工的全局、高质量视图的能力
全转录组:
1. 开发低样本和标签 eCLIP 方法,以在低样本量下对 RBP 进行高度可并行的体内分析。
输入样品,以及缺乏用于免疫沉淀的高质量天然抗体的 RBP。
2. 表明转录组分析与 RBP 靶标识别相结合可以识别关键的
生物系统的调节剂,利用人类诱导多能干细胞的分化作为
模型系统
3. 开发非编码RNA上游功能调节因子的公正鉴定方法
以RNA为中心的方式进行RNA加工。
我在基因组学、计算生物学以及 DNA 和 RNA 结合研究方面拥有丰富的专业知识
蛋白质使我成为进行上述研究的理想人选。这三个目标需要
不同的方法将结合在一起形成强大的能力,从感兴趣的 RBP 开始并识别其
监管目标,或从感兴趣的 RNA 开始并确定监管 RBP,这将作为基础
作为一名独立教师候选人,我的独立研究项目。 UCSD 的 Yeo 实验室是一个理想的选择
进行这项研究并完成我追求独立学术的培训的环境
教职地位,因为它一直是实验和计算开发领域的领导者
表征 RBP 调节的方法。此外,Yeo 实验室的位置靠近杰出的
加州大学圣地亚哥分校、索尔克研究所以及拉霍亚其他研究机构和生物技术公司的研究人员
将提供干细胞培养和分化方面的具体实践实验培训,以及充足的
进行研究和开发独立研究计划的指导培训的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Lyman Van Nostrand其他文献
Eric Lyman Van Nostrand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Lyman Van Nostrand', 18)}}的其他基金
Large-scale characterization of the function of RNA regulatory elements
RNA调控元件功能的大规模表征
- 批准号:
10293392 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Large-scale characterization of the function of RNA regulatory elements
RNA调控元件功能的大规模表征
- 批准号:
10487581 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Large-scale characterization of the function of RNA regulatory elements
RNA调控元件功能的大规模表征
- 批准号:
10661748 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Robust, high-throughput identification of RNA processing regulators and regulatory networks genome-wide
对全基因组 RNA 加工调节因子和调节网络进行稳健、高通量的鉴定
- 批准号:
10159948 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Robust, high-throughput identification of RNA processing regulators and regulatory networks genome-wide
对全基因组 RNA 加工调节因子和调节网络进行稳健、高通量的鉴定
- 批准号:
9294733 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
GSE1选择性剪接激活PI3K/Akt通路调控脂质代谢影响衰老进程的机制研究
- 批准号:82360286
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
PTBP1选择性剪接对Nogo/NgR信号的影响及其在PTSD靶向治疗中的作用与机制研究
- 批准号:82372508
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
UHRF1/DNMT1-MZF1轴调控PRSS3选择性剪接影响非小细胞肺癌功能异质性的表观机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
mRNA选择性剪接和2′-O-甲基化修饰对植物抗病基因多样性影响及对抗病功能调控的研究
- 批准号:32170218
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
遗传变异调控选择性剪接影响肺腺癌发生的分子流行病学研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
- 批准号:
10648346 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Genetic and pharmacologic elimination of myotonia from myotonic dystrophy type 1
通过遗传和药物消除 1 型强直性肌营养不良引起的肌强直
- 批准号:
10750357 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Understanding the Role of GARP Proteins in Rod Outer Segment Disc Formation and Retinal Degeneration
了解 GARP 蛋白在视杆外节盘形成和视网膜变性中的作用
- 批准号:
10748725 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
BIN1-interactome in Alzheimer's disease pathophysiology
BIN1-相互作用组在阿尔茨海默病病理生理学中的作用
- 批准号:
10677190 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: