Mechanisms of mitochondrial inheritance
线粒体遗传机制
基本信息
- 批准号:10365938
- 负责人:
- 金额:$ 6.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Actin-Binding ProteinActinsAddressAffinityAllelesAnimal ModelBindingBinding ProteinsBiochemicalBiochemistryBiologicalCell LineageCell NucleusCellsComplexCytoskeletonDNA sequencingDefectDevelopmentDiseaseDrosophila genusDrosophila melanogasterEmbryoEmbryonic DevelopmentEnsureEventF-ActinFluorescence MicroscopyGene FrequencyGenesGeneticGenomeGermGerm CellsGoalsHumanIn VitroIndividualInheritedKnock-outKnowledgeLabelLightMapsMass Spectrum AnalysisMeasuresMembraneMembrane ProteinsMethodsMitochondriaMitochondrial DNAMitochondrial DiseasesMitochondrial InheritanceMitochondrial ProteinsMolecularMothersMusMutationMyopathyNeurodegenerative DisordersNeuromuscular DiseasesNuclearOocytesOrganellesOuter Mitochondrial MembranePloidiesPoint MutationPopulationProcessProliferatingProtein IsoformsProteinsProteomicsQuantitative MicroscopyRNA InterferenceRNA interference screenResolutionRespirationRestRiskSamplingSiblingsSiteStructure of primordial sex cellSystemTemperatureTestingTropomyosinbasecrosslinkcytochrome c oxidaseexperimental studyflyhigh resolution imaginginsightinterdisciplinary approachknock-downmitochondrial DNA mutationmitochondrial genomemitochondrial membranemolecular imagingmutantnervous system disorderoffspringprecursor cellpreimplantationrecruitsegregationsingle moleculetandem mass spectrometrytransgenerational epigenetic inheritancetransmission process
项目摘要
Project Summary
The survival of eukaryotic species depends on the faithful transmission of both nuclear and mitochondrial
genomes. Mutations in mitochondrial DNA (mtDNA) cause neurodegenerative and neuromuscular diseases in
humans. Strikingly, though mitochondria are inherited exclusively through the maternal lineage, rapid changes
in mtDNA allele frequency can occur, resulting in severe mitochondrial disease in a subset of offspring due to
an increased mutational load. The long-term goal of this project is to decipher the molecular mechanisms
regulating mitochondrial segregation in the germline. To achieve this goal, I will take a multidisciplinary approach
combining genetics, proteomics, biochemistry, and high-resolution quantitative microscopy using the model
organism, Drosophila melanogaster. The following aims will be pursued: (1) Analyze mtDNA allele frequency in
gamete precursor cells termed primordial germ cells (PGCs). During embryogenesis, a small subset of
mitochondria is permanently separated from the rest of the oocyte into PGCs, resulting in an ~1000-fold reduction
in mtDNA content. To examine the consequence of this mitochondrial population bottleneck on the segregation
of mtDNA alleles, I will use a heteroplasmic fly strain harboring both wild-type and mutant mitochondrial
genomes. I will determine mtDNA allele frequency in individual PGCs using high-resolution imaging of single
mtDNA molecules and quantitative PCR and will examine how these ratios change when the size of the
bottleneck is genetically constricted. (2) Determine the network of Long Oskar interacting proteins. Long Oskar
is the master regulator of mitochondrial inheritance. To recruit mitochondria to the site of PGC formation, Long
Oskar stimulates F-actin reorganization, but it does not contact mitochondria directly. To identify proteins
downstream of Long Oskar, I will use proximity labelling and tandem mass spectrometry. I will then map Long
Oskar-binding regions on direct binding partners. (3) Identify nuclear-encoded mitochondrial proteins required
for mitochondrial inheritance. Currently, our understanding of how mitochondria are targeted to sites of PGC
formation is limited by an incomplete parts list of the mitochondrial segregation machinery. I will perform a
comprehensive RNAi screen of mitochondrial membrane-associated proteins to identify those required for
mitochondrial localization. Together, these aims will reveal how the mitochondrial bottleneck impacts the
segregation of mtDNA alleles and will likely inform on the population risk of mitochondrial associated diseases.
In addition, these experiments will identify molecular components of the mtDNA segregation machinery that is
used to transmit mitochondria to germline cells during early Drosophila embryogenesis. Together, these results
have the potential to shed light on how similar events may occur in pre-implantation human embryos.
项目概要
真核物种的生存取决于核和线粒体的忠实传递
基因组。线粒体 DNA (mtDNA) 突变会导致神经退行性疾病和神经肌肉疾病
人类。引人注目的是,尽管线粒体仅通过母系遗传,但快速变化
mtDNA 等位基因频率中的突变可能会发生,导致部分后代出现严重的线粒体疾病,原因是
突变负荷增加。该项目的长期目标是破译分子机制
调节种系中的线粒体分离。为了实现这个目标,我将采取多学科的方法
使用该模型结合遗传学、蛋白质组学、生物化学和高分辨率定量显微镜
有机体,果蝇。将追求以下目标:(1)分析mtDNA等位基因频率
配子前体细胞称为原始生殖细胞(PGC)。在胚胎发生过程中,一小部分
线粒体与卵母细胞的其余部分永久分离成 PGC,从而导致约 1000 倍的减少
线粒体DNA含量。检查线粒体群体瓶颈对分离的影响
mtDNA 等位基因,我将使用同时具有野生型和突变型线粒体的异质蝇菌株
基因组。我将使用单个 PGC 的高分辨率成像来确定单个 PGC 中的 mtDNA 等位基因频率。
mtDNA 分子和定量 PCR 并将检查当 mtDNA 分子大小变化时这些比率如何变化
瓶颈是基因限制的。 (2)确定Long Oskar相互作用蛋白的网络。长奥斯卡
是线粒体遗传的主要调节者。为了将线粒体募集到 PGC 形成位点,Long
Oskar 刺激 F-肌动蛋白重组,但它不直接接触线粒体。鉴定蛋白质
在 Long Oskar 的下游,我将使用邻近标记和串联质谱法。然后我将绘制长
直接结合伙伴上的奥斯卡结合区域。 (3) 鉴定所需的核编码线粒体蛋白
用于线粒体遗传。目前,我们对线粒体如何靶向 PGC 位点的了解
线粒体分离机制的零件清单不完整,限制了其形成。我将执行一个
对线粒体膜相关蛋白进行全面的 RNAi 筛选,以确定所需的蛋白
线粒体定位。这些目标将共同揭示线粒体瓶颈如何影响
线粒体DNA等位基因的分离,可能会提示线粒体相关疾病的人群风险。
此外,这些实验将鉴定 mtDNA 分离机制的分子成分,即
用于在早期果蝇胚胎发生过程中将线粒体传递给生殖细胞。综合起来,这些结果
有可能揭示类似事件如何在植入前的人类胚胎中发生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa Pamula其他文献
Melissa Pamula的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melissa Pamula', 18)}}的其他基金
Mechanisms of mitochondrial inheritance - Pamula Admin Childcare Supplement
线粒体遗传机制 - Pamula Admin Childcare Supplement
- 批准号:
10747188 - 财政年份:2021
- 资助金额:
$ 6.98万 - 项目类别:
相似国自然基金
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A novel role for Wasl signaling in the regulation of skeletal patterning
Wasl 信号在骨骼模式调节中的新作用
- 批准号:
10718448 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Role of C. elegans RAPGEF in Synapse Development at the Neuromuscular Junction
线虫 RAPGEF 在神经肌肉接头突触发育中的作用
- 批准号:
10676616 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Cell Biology of Vasopressin-induced Water Channels-Research Supplement
加压素诱导的水通道的细胞生物学-研究补充
- 批准号:
10835229 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Mechanisms of septin-actin cytoskeletal crosstalk
septin-肌动蛋白细胞骨架串扰的机制
- 批准号:
10677181 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Molecular Mechanisms Underlying Cytoneme Formation by Sonic Hedgehog-Producing Cells
Sonic Hedgehog 产生细胞形成细胞因子的分子机制
- 批准号:
10678288 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别: