Permeation and Gating Mechanisms of Mechanosensitive PIEZO channels
机械敏感压电通道的渗透和门控机制
基本信息
- 批准号:10364203
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Amino AcidsAnemiaBiochemicalBiologicalBiological AssayBiological ProcessBiophysicsBrain DiseasesBrain IschemiaCardiovascular DiseasesCardiovascular systemCellsChemicalsComplexCoupledCryoelectron MicroscopyDataDegenerative polyarthritisDevelopmentDiseaseDrug DesignElementsEnvironmentEvolutionExhibitsExposure toFamilyFunctional disorderFutureGliomaGoalsHeadHealthHematological DiseaseHumanHypertensionInvestigationIon ChannelIonsKineticsLateralLinkLipid BilayersLipidsLiquid substanceLymphatic DiseasesMechanicsMedicalMembraneMembrane ProteinsMerkel CellsMolecularMolecular BiologyMolecular MachinesNeoplasm MetastasisNeuronsPainPathologyPhysiologicalPhysiologyPiezo 1 ion channelPiezo 2 ion channelPiezo ion channelsPlant RootsPlayPoint MutationPopulationProbabilityProcessPropertyProprioceptionProtein RegionProteinsProtocols documentationPublishingPulse PressureRegulationReportingResearch ProposalsResolutionRespiratory physiologyRoleSensorySeriesSomatosensory DisordersSpinal GangliaStimulusStressStretchingStructureSystemTertiary Protein StructureTestingTimeTissuesTouch sensationTransmembrane DomainUnited StatesVertebratesbasebiophysical techniquesdirect applicationdisease-causing mutationextracellularinsightinterestmechanical propertiesmechanotransductionmembrane assemblymonomermutantnervous system disorderpainful neuropathypatch clamppressureprotein purificationprotein reconstitutionreconstitutionresponsesensorsensory systemshear stresssingle moleculestructural biologytherapeutic developmenttherapeutic targettherapeutically effectivetumorigenesisvoltage
项目摘要
Project Summary
Many cardiovascular and neurological disorders, and oncogenesis result from changes in cell mechanics.
Assessment of human pathophysiology in this context reveals that these diseases share a common root cause:
abnormal mechanotransduction – the process by which cells respond to physical stress and forces.
Mechanosensitive ion channels, the molecular machines by which cells convert external forces into electrical
response, are therefore emerging targets of interest, for understanding biological processes and for therapeutic
development.
Piezo family (Piezo1 and Piezo2) was discovered in 2010 as the first excitatory mechanosensitive ion channels
in vertebrates. Piezo channels are now known to be critical sensors of touch and pain (somatosensation), volume
regulation (osmosensation), shear stress (cardiovascular tone), baroreception, proprioception and respiratory
physiology, and may have other important functions yet to be discovered. Substantial efforts are made in the last
decade to identify Piezo related diseases and incidents within the United State population. So far, Piezo
dysfunction is linked to diverse pathologies including hypertension, lymphatic disease and anemias,
somatosensory and neurological disorders, cancer and metastasis, amongst others. Despite their biological and
medical relevance, the mechanism behind Piezo-dependent mechanotransduction remains elusive. Therefore,
our lab’s goal is to understand how physical forces such as pressure and membrane tension control Piezo1
function in health and diseased state.
This research proposal focuses on ion permeation and force-dependent gating mechanisms of Piezo1 channels,
in cells, as well as in reconstituted lipid bilayer systems. We will employ biochemical and biophysical techniques
in efforts to understand how lipid bilayer control the gating of Piezo1 and subsequent ion conduction across the
membrane. Moreover, we have identified robust expression and protein purification protocols to examine the
function of Piezo1 channels. Droplet lipid bilayers will be used to study the single channel conductance and open
probability of the purified protein in biologically relevant lipid compositions. Structurally identified pore domain of
Piezo1 will be used as a template to understand the pressure sensitivity and voltage-dependent inactivation -
hallmark of Piezo channels - by constructing various deletion mutants- heterologous expression in HEK cells.
The preliminary data is striking, and shows that the droplet bilayer approach coupled with traditional cellular
patch clamp assays are ideally suited to study mammalian Piezo1 channel function. We are convinced that a
comprehensive understanding of Piezo’s function is a timely contribution to the field of mammalian
mechanotransduction. Our unique proposal represents the application of single molecule investigation of Piezos.
Completion of this proposal will provide a path to dissect and kick-start the development of effective therapeutics
targeted towards neuropathic pain, brain ischemia and gliomas, amongst others.
项目概要
许多心血管和神经系统疾病以及肿瘤发生都是由细胞力学的变化引起的。
在这种情况下对人类病理生理学的评估表明,这些疾病有一个共同的根本原因:
异常机械转导——细胞对物理压力和力量做出反应的过程。
机械敏感离子通道,细胞将外力转化为电能的分子机器
因此,对于理解生物过程和治疗而言,它们是新兴的令人感兴趣的目标
发展。
Piezo 家族(Piezo1 和 Piezo2)于 2010 年被发现,是第一个兴奋性机械敏感离子通道
在脊椎动物中,压电通道现在被认为是触觉和疼痛(体感)、音量的关键传感器。
调节(渗透感觉)、剪切应力(心血管张力)、压力感受、本体感受和呼吸
生理学,并且可能还有其他重要功能尚待发现。
迄今为止,美国人口中识别压电相关疾病和事件的时间已长达十年。
功能障碍与多种病理有关,包括高血压、淋巴疾病和贫血,
体感和神经系统疾病、癌症和转移等,尽管它们具有生物学和功能性。
医学相关性,压电依赖性机械传导背后的机制仍然难以捉摸。
我们实验室的目标是了解压力和膜张力等物理力如何控制压电1
健康和患病状态下的功能。
该研究计划重点关注 Piezo1 通道的离子渗透和力依赖性门控机制,
在细胞以及重建的脂质双层系统中,我们将采用生物化学和生物物理技术。
了解脂质双层如何控制 Piezo1 的门控以及随后的离子传导
此外,我们还确定了强大的表达和蛋白质纯化方案来检查膜。
Piezo1 通道的功能将用于研究单通道电导和开放。
生物学相关脂质组合物中纯化蛋白质的概率。
Piezo1 将用作模板来了解压力敏感性和电压依赖性失活 -
压电通道的标志 - 通过构建各种缺失突变体 - 在 HEK 细胞中异源表达。
初步数据令人震惊,并表明液滴双层方法与传统细胞相结合
膜片钳检测非常适合研究哺乳动物 Piezo1 通道功能。
对压电功能的全面理解是对哺乳动物领域的及时贡献
我们独特的建议代表了压电单分子研究的应用。
该提案的完成将为剖析和启动有效疗法的开发提供一条途径
针对神经性疼痛、脑缺血和神经胶质瘤等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RUHMA SYEDA其他文献
RUHMA SYEDA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RUHMA SYEDA', 18)}}的其他基金
Permeation and Gating Mechanisms of Mechanosensitive PIEZO channels
机械敏感压电通道的渗透和门控机制
- 批准号:
10654863 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Permeation and Gating Mechanisms of Mechanosensitive PIEZO channels
机械敏感压电通道的渗透和门控机制
- 批准号:
10665200 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
相似国自然基金
影响α地中海贫血表型严重性的PIP4K2A基因变异的鉴定及机制研究
- 批准号:82370122
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于构建骨骼类器官模型探究Fanconi anemia信号通路调控电刺激诱导神经化成骨过程的机制研究
- 批准号:82302715
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
范可尼贫血家族蛋白FANCD2通过保护早期复制脆性位点维持基因组稳定性的分子机制研究
- 批准号:32301078
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究引起范科尼贫血症的内源DNA损伤
- 批准号:32371353
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
MIF-CD74通路促进骨髓驻留CD8+T细胞活化在再生障碍性贫血中的作用研究
- 批准号:82370141
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Structural Mechanisms of DNA Damage Sensing and Activation of the ATR, Fanconi Anemia, and ATM Checkpoints
DNA 损伤感知和 ATR、范可尼贫血和 ATM 检查点激活的结构机制
- 批准号:
10639156 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Molecular Mechanisms of The Human Mitochondrial ABC Transporter ABCB10
人类线粒体 ABC 转运蛋白 ABCB10 的分子机制
- 批准号:
10596638 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Base editing and prime editing for sickle cell disease
镰状细胞病的碱基编辑和引物编辑
- 批准号:
10157511 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Permeation and Gating Mechanisms of Mechanosensitive PIEZO channels
机械敏感压电通道的渗透和门控机制
- 批准号:
10654863 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Base editing and prime editing for sickle cell disease
镰状细胞病的碱基编辑和引物编辑
- 批准号:
10323054 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别: