Development of a new computational method for predicting drug - target interactions using a TSR-based representation of 3-D structures

开发一种新的计算方法,使用基于 TSR 的 3-D 结构表示来预测药物-靶点相互作用

基本信息

  • 批准号:
    10363369
  • 负责人:
  • 金额:
    $ 42.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Title: Development of a new computational method for predicting drug - target interactions using a TSR-based representation of 3-D structures Project Summary: Protein and drug 3-D structures play a pivotal role in drug design and discovery. At the same time, it is very challenging to extract meaningful structural information and convert it to knowledge. In the last forty years, since the development of the first automated structural method, approximately 200 papers have been published using different representations of structures. Each has its uniqueness and limitations. Our project adds to the existing knowledge base with a new TSR (Triangular Spatial Relationship)-based representation of protein 3-D structures using Cα atoms. Triangles are constructed with the Cα atoms of a protein as vertices. Every triangle is represented by an integer, which we denote as "key". A key is computed using the length, angle and vertex labels based on a rule-based formula, which ensures assignment of the same key to identical TSRs across proteins. Since the keys are constructed among three residues, they are considered inter-residue keys. Our results clearly demonstrate successful clustering of proteins that matches their functional classifications in most cases and successful identification of known and new structural motifs. Although we have been successful using Cα, two facts inspired us to continue developing intra-residue keys to represent structures of side chains. The first fact, which emerged when we studied triad of serine proteases, is that we found a key that represents two different triads of chymotrypsin. However, only one of them is the true triad, when the interactions between the side chains are considered. The second fact is that drugs often have close interactions with side chains of proteins. Thus, the overall objectives of this proposal are to develop an effective method for representing 3-D structures of proteins and drugs that is customized for the study of drug and protein interactions. The ways to represent protein and drug structures, and to predict drug and protein interactions, are innovative. We have made our computational tools available for the scientific community and will continue to do so. Our central hypothesis is that complex 3-D structures can be divided into a set of triangles, the simplest primitives to capture the shape. Each triangle is converted to an integer that uniquely captures its essential characteristics. It means that a 3-D structure can be represented by a multiset of integers (bag of keys). The rationale of this proposal is derived from the results of our studies that used inter-residue keys to obtain TSR-based representation of protein structures. The method built based on this TSR idea has important advantages over the existing methods. Five specific Aims will be pursued: development of TSR-based key representation of amino acids and corresponding representation mechanism for drugs, integration of inter- and intra-residue keys for identifying drug-binding sites, predicting drug – target interactions, and integration of computational calculations with experimental data. The proposed research will have significant impacts on research in the fields of comparing protein 3-D structures and accelerating drug development for pharmaceutical industries.
标题:开发用于预测药物的新计算方法 - 使用 基于TSR的3D结构表示 项目摘要: 蛋白质和药物3-D结构在药物设计和发现中起关键作用。同时,是 提取有意义的结构信息并将其转换为知道的非常挑战。在过去的四十年中, 自从第一个自动结构方法的开发以来,大约有200篇论文 使用不同的结构表示。每个都有其独特性和局限性。我们的项目 通过新的TSR(三角形空间关系)的基于新的TSR的表示基础 使用Cα原子的蛋白质3-D结构。三角形由蛋白质的Cα原子作为顶点构建。 每个三角形都由整数表示,我们将其表示为“钥匙”。使用键计算 长度,角度和顶点标签基于基于规则的公式,该公式可确保分配相同的密钥 跨蛋白质相同的TSR。由于钥匙是在三个保留中构建的,因此被认为 占用键。我们的结果清楚地表明了与他们的蛋白质的成功聚类 在大多数情况下,功能分类以及已知和新结构基序的成功识别。 尽管我们已经成功使用了Cα,但两个事实激发了我们继续开发占用物内键 代表侧链的结构。当我们研究串行蛋白酶三合会时出现的第一个事实, 是我们找到了一个代表两个不同三合会的胰胆红蛋白三合会的钥匙。但是,其中只有一个是 当考虑侧链之间的相互作用时,真正的三合会。第二个事实是毒品经常 与蛋白质的侧链有密切的相互作用。这是该提议的总体目标是发展 代表蛋白质和药物的3-D结构的有效方法,该方法是为研究而定制的 药物和蛋白质相互作用。表示蛋白质和药物结构的方法,并预测药物和 蛋白质相互作用,具有创新性。我们使我们的计算工具可用于科学 社区并将继续这样做。我们的中心假设是,复杂的3-D结构可以分为 一组三角形,是捕获形状的最简单原始图。每个三角形都转换为一个整数 独特地捕获其基本特征。这意味着3D结构可以由 整数(钥匙袋)的多组。该提案的基本原理来自我们的研究结果 使用的用于获得基于TSR的蛋白质结构表示的固定键。基于 这种TSR的想法比现有方法具有重要的优势。将追求五个具体目标: 开发基于TSR的氨基酸的关键表示和相应的表示机制 对于药物,整合用于鉴定药物结合位点的残留键和残留键,预测药物 - 靶标 相互作用以及计算计算与实验数据的集成。拟议的研究将 对比较蛋白质3-D结构和加速药物的研究产生重大影响 制药行业的发展。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

相似国自然基金

三疣梭子蟹两种含不同关键氨基酸基序C型凝集素的糖识别机制研究
  • 批准号:
    31702375
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
CRAC中心酪氨酸突变介导肝细胞胆小管侧膜BSEP膜胆固醇敏感性及转运功能减退的分子机制
  • 批准号:
    81670580
  • 批准年份:
    2016
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

EXPLOITING MICROBIOME SEQUENCES FOR IMPROVED MODELS OF PROTEIN-DNA INTERACTIONS
利用微生物组序列改进蛋白质-DNA 相互作用模型
  • 批准号:
    8149991
    8149991
  • 财政年份:
    2010
  • 资助金额:
    $ 42.05万
    $ 42.05万
  • 项目类别:
Development of Antimicrobial Peptides as Topical Microbicides
抗菌肽作为局部杀菌剂的开发
  • 批准号:
    8092553
    8092553
  • 财政年份:
    2010
  • 资助金额:
    $ 42.05万
    $ 42.05万
  • 项目类别:
EXPLOITING MICROBIOME SEQUENCES FOR IMPROVED MODELS OF PROTEIN-DNA INTERACTIONS
利用微生物组序列改进蛋白质-DNA 相互作用模型
  • 批准号:
    8020738
    8020738
  • 财政年份:
    2010
  • 资助金额:
    $ 42.05万
    $ 42.05万
  • 项目类别:
Development of Antimicrobial Peptides as Topical Microbicides
抗菌肽作为局部杀菌剂的开发
  • 批准号:
    7893461
    7893461
  • 财政年份:
    2010
  • 资助金额:
    $ 42.05万
    $ 42.05万
  • 项目类别:
The MEME suite of motif-based sequence analysis tools
基于基序的序列分析工具 MEME 套件
  • 批准号:
    9040997
    9040997
  • 财政年份:
    2009
  • 资助金额:
    $ 42.05万
    $ 42.05万
  • 项目类别: