Driver Genes for Engineered Rotator Cuff Development
工程化肩袖发育的驱动基因
基本信息
- 批准号:10352200
- 负责人:
- 金额:$ 48.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-15 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdipose tissueAdultAffectAllogenicAmericanAnatomyAnteriorAreaAutologousBiochemicalBiocompatible MaterialsBioinformaticsBiological AssayBiological MarkersBiomechanicsCadaverCellsCicatrixClinicalCommunitiesComplexComputational TechniqueCuesDNADataData SetDevelopmentDevicesEngineered GeneEngineeringEvaluationExtracellular MatrixFibroblastsFibrosisGenesGeneticHarvestHeadHeterogeneityHumanImpairmentIn VitroInjuryInvestigationJoint structure of shoulder regionKnowledgeMachine LearningMeasuresMechanical StimulationMechanicsMedialMedicalMesenchymal Stem CellsMetabolismMethylationModelingModificationMolecularMusculoskeletalNatural regenerationOperative Surgical ProceduresOrthopedicsOutcomePhenotypePopulationProcessPropertyProteinsProteomeRNARegenerative MedicineResearchResourcesRotator CuffSeedsTechniquesTendon structureTestingTissue EngineeringTissuesTranslatingTranslationsWorkdesignepigenomeimprovedinnovationinterestjoint biomechanicsjoint functionlipidomemechanical loadmechanical propertiesmetabolomemethylomemultiple omicsoverexpressionpatient populationphenomephenomicspreclinical studyregenerativerepairedresponserotator cuff tearscaffoldspatial relationshipstem cellssupraspinatus muscletendon developmenttherapeutic targettranscriptometranslation to humans
项目摘要
Rotator cuff tears affect over 15% of Americans and impair shoulder joint biomechanics and function. Following
repair of symptomatic tears, functional deficits frequently persist and re-tears are common, due to the complex
anatomy and high functional demands on the rotator cuff tendons. Rotator cuff tendon tissue engineering
research is focused on devices to improve immediate mechanical support to the repair and to stimulate early
and rapid tendon regeneration rather than scarring and fibrosis, particularly for the supraspinatus tendon (SST),
the most commonly torn tendon in the rotator cuff. Aligned electrospun scaffolds that mimic both the highly
aligned medial region of the SST, and bi-axially aligned electrospun scaffolds that mimic the multi-axially aligned
isotropic anterior region of the SST have been evaluated with promising results when seeded with adipose-
derived stem cells (ASCs). However, progress in this area of rotator cuff tendon engineering and in other areas
of tendon research is hindered by the lack of definitive markers for SST or for its regional heterogeneity, the lack
of understanding to what extent ASCs are tenogenic and can assume the identity of tendon fibroblasts, the lack
of specific markers for tendon fibroblast identity and tenogenic differentiation, and by a lack of markers for tendon
maturation and response to mechanical loading in engineered tendon. Therefore, is it difficult to assess how
successful current tendon tissue engineering approaches really are, or to predict how well tendon tissue
engineered approaches will function in translation when autologous or allogeneic ASCs from diverse human
populations are used to enhance rotator cuff repair via augmentation or interposition with engineered tendon
devices. These studies will evaluate the epigenome (methylome), transcriptome, proteome, lipidome,
metabolome and phenome (phenotype) of native human SST and donor-matched tissue engineered tendon
produced from SST fibroblasts and ASCs. Bioinformatics approaches will be used to integrate the data to an
integrated multiome, which will then be used with machine learning approaches to extract key causal ‘driver’
genes, or tendon specific genes or molecules responsible for: 1) SST heterogeneity between medial and anterior
regions. 2) Tendon cell identity and the extent of tenogenesis by ASCs on electrospun scaffolds. 3) The
heterogenetic response by ASCs on uni- vs. bi-axially aligned electrospun scaffolds that mimic the native
heterogeneity of the SST. 4) The response of engineered tendon to dynamic loading. Identified driver genes or
molecules will be validated though over-expression or silencing approaches, thus providing therapeutic targets
for manipulation to enhance tenogenesis, and engineered tendon development and maturation. Together these
innovative studies will provide a template for improved external validity of benchtop tendon tissue engineering
and pre-clinical studies towards successful translation in diverse patient populations. In addition, the
bioinformatics and multiomics toolboxes and assays that result from this work will be invaluable to not only the
tendon research community, but also to the wider musculoskeletal and regenerative medicine fields.
肩袖撕裂影响超过 15% 的美国人,并损害肩关节的生物力学和功能。
由于复杂的原因,症状性眼泪的修复、功能缺陷经常持续存在并且再次流泪很常见
对肩袖肌腱的解剖学和高功能要求 肩袖肌腱组织工程。
研究重点是改善对修复的直接机械支持并刺激早期修复的装置
和快速肌腱再生而不是疤痕和纤维化,特别是冈上肌腱(SST),
肩袖中最常见的撕裂肌腱,模仿了高度模仿的电纺支架。
SST 的对齐内侧区域,以及模仿多轴对齐的双轴对齐电纺支架
当接种脂肪时,SST 的各向同性前部区域已得到评估,并取得了有希望的结果
然而,肩袖肌腱工程这一领域和其他领域的进展。
由于缺乏 SST 的明确标记或其区域异质性,肌腱研究的进展受到阻碍。
理解 ASC 在多大程度上是肌腱发生的并且可以呈现肌腱成纤维细胞的身份,缺乏
肌腱成纤维细胞身份和肌腱分化的特异性标记物,以及肌腱标记物的缺乏
因此,很难评估工程肌腱的成熟度和对机械负荷的反应。
目前的肌腱组织工程方法确实很成功,或者可以预测肌腱组织的状况
当来自不同人类的自体或同种异体 ASC 时,工程化方法将在翻译中发挥作用
通过增强或插入工程肌腱来增强肩袖修复
这些研究将评估表观基因组(甲基组)、转录组、蛋白质组、脂质组、
天然人类 SST 和供体匹配的组织工程肌腱的代谢组和表型(表型)
由 SST 成纤维细胞和 ASC 产生的数据将用于将数据整合到一个模型中。
集成的多组学,然后将其与机器学习方法一起使用,以提取关键的因果“驱动因素”
基因、或肌腱特异性基因或分子负责:1) 内侧和前侧之间的 SST 异质性
2) 肌腱细胞身份和 ASC 在电纺支架上的肌腱形成程度。
ASC 对单轴与双轴排列的模仿天然的电纺支架的异质反应
SST 的异质性 4) 工程肌腱对动态负载的响应。
分子将通过过度表达或沉默方法进行验证,从而提供治疗靶点
用于增强肌腱形成的操作,以及工程肌腱的发育和成熟。
创新研究将为提高台式肌腱组织工程的外部有效性提供模板
以及在不同患者群体中成功转化的临床前研究。
这项工作产生的生物信息学和多组学工具箱和分析方法不仅对于
肌腱研究界,还扩展到更广泛的肌肉骨骼和再生医学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dianne Little其他文献
Dianne Little的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dianne Little', 18)}}的其他基金
Driver Genes for Engineered Rotator Cuff Development
工程化肩袖发育的驱动基因
- 批准号:
10594580 - 财政年份:2019
- 资助金额:
$ 48.81万 - 项目类别:
Driver Genes for Engineered Rotator Cuff Development
工程化肩袖发育的驱动基因
- 批准号:
9894766 - 财政年份:2019
- 资助金额:
$ 48.81万 - 项目类别:
Scaffold Microenvironments for Tendon-to-Bone Tissue Engineering
肌腱到骨组织工程的支架微环境
- 批准号:
8842592 - 财政年份:2014
- 资助金额:
$ 48.81万 - 项目类别:
Scaffold Microenvironments for Tendon-to-Bone Tissue Engineering
肌腱到骨组织工程的支架微环境
- 批准号:
8638314 - 财政年份:2014
- 资助金额:
$ 48.81万 - 项目类别:
Scaffold Microenvironments for Tendon-to-Bone Tissue Engineering
肌腱到骨组织工程的支架微环境
- 批准号:
9040097 - 财政年份:2014
- 资助金额:
$ 48.81万 - 项目类别:
Scaffold Microenvironments for Tendon-to-Bone Tissue Engineering
肌腱到骨组织工程的支架微环境
- 批准号:
9406519 - 财政年份:2014
- 资助金额:
$ 48.81万 - 项目类别:
Aligned Tendon or Ligament Derived Matrix Nanoscaffolds for Rotator Cuff Repair
用于肩袖修复的对齐肌腱或韧带衍生基质纳米支架
- 批准号:
8452606 - 财政年份:2011
- 资助金额:
$ 48.81万 - 项目类别:
Aligned Tendon or Ligament Derived Matrix Nanoscaffolds for Rotator Cuff Repair
用于肩袖修复的对齐肌腱或韧带衍生基质纳米支架
- 批准号:
8786290 - 财政年份:2011
- 资助金额:
$ 48.81万 - 项目类别:
Aligned Tendon or Ligament Derived Matrix Nanoscaffolds for Rotator Cuff Repair
用于肩袖修复的对齐肌腱或韧带衍生基质纳米支架
- 批准号:
8111496 - 财政年份:2011
- 资助金额:
$ 48.81万 - 项目类别:
Aligned Tendon or Ligament Derived Matrix Nanoscaffolds for Rotator Cuff Repair
用于肩袖修复的对齐肌腱或韧带衍生基质纳米支架
- 批准号:
8251126 - 财政年份:2011
- 资助金额:
$ 48.81万 - 项目类别:
相似国自然基金
YTHDC1调控棕色脂肪组织大小、发育和能量代谢的作用机制研究
- 批准号:32371198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
糖尿病脂肪组织中SIRT3表达降低进而上调外泌体miR-146b-5p促进肾小管脂毒性的机制研究
- 批准号:82370731
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于ADPN-Cer轴的柑橘黄酮调控能量负平衡奶牛脂肪组织脂解的分子机制
- 批准号:32302767
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Acvrl1调控脂肪组织巨噬细胞M1/M2极化改善肥胖的机制研究
- 批准号:82300973
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ANGPTLs基因及其蛋白表达水平调控内脏脂肪组织影响健康衰老表型的前瞻性队列研究
- 批准号:82373661
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Regulation of neuronal function by mitochondrial uncoupling
通过线粒体解偶联调节神经元功能
- 批准号:
10664198 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别:
Metformin IN Asthma for overweight and obese individuals (MINA)
二甲双胍用于超重和肥胖人群的哮喘治疗 (MINA)
- 批准号:
10740950 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别:
Highly Elastic Biomaterial Development for Urethral Application
尿道应用的高弹性生物材料开发
- 批准号:
10573094 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别:
Impact of obesity on SARS-CoV-2 infection and reciprocal effects of SARS-CoV-2 on metabolic disease
肥胖对 SARS-COV-2 感染的影响以及 SARS-COV-2 对代谢疾病的相互影响
- 批准号:
10583175 - 财政年份:2023
- 资助金额:
$ 48.81万 - 项目类别: