Incorporating Learning Effects into Medical Device Active Safety Surveillance Methods
将学习效果纳入医疗器械主动安全监测方法
基本信息
- 批准号:10352373
- 负责人:
- 金额:$ 75.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Implantable medical devices have revolutionized contemporary cardiovascular care, and
are used in a wide spectrum of acute and chronic cardiovascular conditions. However, medical
device design fault or incorrect use may lead to significant risk of patient injury and represents
an important preventable public health risk in the United States. To help identify device-related
safety issues, a strategy of active, prospective, post-market safety surveillance has been
recommended by the FDA, and evaluated methodologically. This type of surveillance offers
significant advantages over traditional adverse event reporting strategies. However, all such
approaches are challenged by the need to incorporate learning effects into expectations
regarding safety. These learning impacts been repeatedly shown to have dramatic impacts on
outcomes during early device experience. Quantifying learning effects on the outcomes
associated with high-risk cardiovascular devices will improve our understanding of intrinsic
device performance, thereby identifying patient populations best treated with such devices while
simultaneously providing necessary feedback to device manufacturers to support iterative
improvement in device design. Separately, understanding the impacts of learning may identify
opportunities for targeted training as well as help to tease apart institutional and operator
characteristics that may accelerate the achievement of optimal outcomes in the use of the
specific cardiovascular device.
This proposal seeks to extend the previously validated, open-source, active, prospective
device safety surveillance tool, by developing and validating robust learning curve (LC)
detection and quantification algorithms, designed to simultaneously account for the effects at
the operator and institutional levels. We propose a “blinded” development strategy, in which
one team will generate robust synthetic clinical data simulator with LC impacts, and the other
team develops and applies LC detection and quantification algorithms, without knowledge of the
underlying relationships, determine performance and accuracy through sequential refinement
and validation steps. We propose to formally validate the optimized LC tools in real-world data
through re-analysis of previously published LC effects on transcatheter valves and vascular
closure devices using national cardiovascular registries. In addition, the LC tools will be
incorporated into two active, prospective device safety surveillance studies of novel implantable
cardiovascular devices using large clinical registries.
可植入的医疗设备彻底改变了当代心血管护理,并且
用于广泛的急性和慢性心血管疾病。但是,医疗
设备设计故障或不正确的使用可能会导致患者受伤的重大风险,并表示
在美国,重要的可预防的公共卫生风险。帮助识别与设备相关的
安全问题,一种积极,潜在的,市场后的安全监视的策略
由FDA推荐并进行方法论评估。这种监视提供
与传统不利事件报告策略相比,具有显着优势。但是,所有这些
将学习效果纳入期望的需要挑战
关于安全。这些学习影响反复证明对
在早期设备体验中的结果。量化学习对结果的影响
与高风险心血管设备相关
设备性能,从而确定最好用此类设备治疗的患者人群
同样,向设备制造商提供必要的反馈以支持迭代
设备设计的改进。单独了解学习的影响可能会识别
有针对性培训的机会,并帮助教授机构和运营商分开
可能会加速使用最佳结果的特征
特定的心血管装置。
该建议旨在扩展先前验证的,开源,活跃,潜在的
设备安全监视工具,通过开发和验证鲁棒学习曲线(LC)
检测和定量算法,旨在简单地说明效果
操作员和机构层面。我们提出了一种“盲人”的发展策略,其中
一个团队将生成具有LC撞击的强大合成临床数据模拟器,另一个
团队开发并应用LC检测和量化算法,不了解
潜在的关系,通过顺序完善确定性能和准确性
和验证步骤。我们建议在实际数据中正式验证优化的LC工具
通过重新分析先前发表的LC对经导管和血管的影响
使用国家心血管注册机构关闭设备。此外,LC工具将是
纳入了两项活跃的前瞻性设备安全监视研究,可用于新型植入
使用大型临床注册机构的心血管设备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
MICHAEL E. MATHENY的其他基金
Evaluating a Prescribing Feedback System for Acute Care Providers
评估急性护理提供者的处方反馈系统
- 批准号:1051563110515631
- 财政年份:2020
- 资助金额:$ 75.45万$ 75.45万
- 项目类别:
Incorporating Learning Effects into Medical Device Active Safety Surveillance Methods
将学习效果纳入医疗器械主动安全监测方法
- 批准号:1057089210570892
- 财政年份:2020
- 资助金额:$ 75.45万$ 75.45万
- 项目类别:
Incorporating Learning Effects into Medical Device Active Safety Surveillance Methods
将学习效果纳入医疗器械主动安全监测方法
- 批准号:1008847110088471
- 财政年份:2020
- 资助金额:$ 75.45万$ 75.45万
- 项目类别:
Evaluating a Prescribing Feedback System for Acute Care Providers
评估急性护理提供者的处方反馈系统
- 批准号:1023719810237198
- 财政年份:2020
- 资助金额:$ 75.45万$ 75.45万
- 项目类别:
Advancing the Phenotyping of Acute Kidney Injury for the Million Veterans Program
为百万退伍军人计划推进急性肾损伤的表型分析
- 批准号:99393069939306
- 财政年份:2019
- 资助金额:$ 75.45万$ 75.45万
- 项目类别:
National Surveillance of Acute Kidney Injury Following Cardiac Catheterization
心导管插入术后急性肾损伤的全国监测
- 批准号:82776538277653
- 财政年份:2012
- 资助金额:$ 75.45万$ 75.45万
- 项目类别:
National Surveillance of Acute Kidney Injury Following Cardiac Catheterization
心导管插入术后急性肾损伤的全国监测
- 批准号:85979628597962
- 财政年份:2012
- 资助金额:$ 75.45万$ 75.45万
- 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
- 批准号:1073644310736443
- 财政年份:2023
- 资助金额:$ 75.45万$ 75.45万
- 项目类别:
Optimizing HEALing in Ohio Communities (OHiO)-Health Equity Supplement
优化俄亥俄州社区 (OHiO) 的治疗 - 健康公平补充
- 批准号:1089039310890393
- 财政年份:2023
- 资助金额:$ 75.45万$ 75.45万
- 项目类别:
Molecular analysis of glutamatergic neurons derived from iPSCs containing PPM1D truncating mutations found in Jansen de Vries Syndrome
Jansen de Vries 综合征中发现的含有 PPM1D 截短突变的 iPSC 衍生的谷氨酸能神经元的分子分析
- 批准号:1057378210573782
- 财政年份:2023
- 资助金额:$ 75.45万$ 75.45万
- 项目类别:
MassHEAL - Reducing overdose deaths by 40% (2019-2023)
MassHEAL%20-%20减少%20过量%20死亡%20by%2040%%20(2019-2023)
- 批准号:1089191210891912
- 财政年份:2023
- 资助金额:$ 75.45万$ 75.45万
- 项目类别: