Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
基本信息
- 批准号:10350387
- 负责人:
- 金额:$ 34.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibodiesAreaBasic ScienceBiological ProductsBiomedical ResearchBypassCD47 geneCell LineCell NucleusCell membraneCellsClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplementComplement component C1CytosolDiffusionDoseEffectivenessElectroporationEncapsulatedEndosomesEngineeringEnzymesExhibitsExtracellular SpaceGTP-Binding ProteinsGene DeliveryGoalsHeterogeneityHumanImmune responseIn VitroIntracellular SpaceKnock-outMeasuresMediatingMethodsMicroinjectionsModificationMolecular WeightNucleic AcidsOrganismPathway interactionsPhenotypeProductionProteinsPublishingRNA InterferenceRNA SequencesResearchResistanceRibonucleoproteinsSafetySpecificitySurfaceSystemTechnologyTestingTherapeuticTimeToxic effectTransfectionViraladaptive immune responsebasecellular engineeringdesignexosomeextracellular vesiclesgene functionhuman diseaseimmunogenicityimprovedin vivoinnovationinterestmacromoleculemicrovesiclesnanobodiesnew technologynovel therapeutic interventionnovel therapeuticsprogramsprotein aggregationprotein degradationprotein functionsuccesssystemic toxicitytooltranslational medicinetreatment strategyubiquitin-protein ligasevesicular stomatitis virus G protein
项目摘要
Project Summary
Technologies to deliver macromolecules across the plasma membrane and bypass endosome degradation are
not only instrumental for elucidating gene function but also hold enormous potential for therapeutics. Proteins,
nucleic acids, and ribonucleoproteins (RNP) have become indispensable tools for biomedical research, however,
their applications in human therapeutics are largely limited to modulating targets reside in the extracellular space.
Only a few percent of exogenous macromolecules can get through the cellular barriers and make it into the
intracellular space. Extracellular vesicles (EVs) are increasingly being explored as potential vehicles for
intracellular therapeutics delivery since they transport bioactive molecules natively between cells. Cell derived
EVs are heterogeneous in size and composition and, consequently, exhibit low specific activity for delivering
cargo of interest. To address these problems, we developed an innovative macromolecule delivery system
based on engineered extracellular vesicles called gectosomes (G protein ectosomes), designed to co-
encapsulate vesicular stomatitis virus G protein (VSV-G) with bioactive macromolecules via split GFP
complementation. The reversible tethering of cargo to VSV-G provides efficient cargo loading and endosomal
escape simultaneously. Gectosomes demonstrated efficient delivery of catalytic enzymes, interference RNA,
and Cas9 RNPs to the cytosol and nucleus and successful modifications of cellular phenotypes. We aim to
develop a versatile and broadly applicable platform technology that allows rapid production of highly specific
gectosomes capable of modulating intracellular targets in vitro and in vivo. The objective of this application is to
demonstrate the feasibility of our approach by improving the homogeneity of gectosomes through CRISPR
engineering of the producer cells and by creating gectosomes that deliver engineered nanobodies or ubiquitin
E3 ligase CRBN intracellularly to alter protein aggregation or degradation. We will also examine host immune
responses to gectosomes and elucidate the efficacy window of gectosome delivery in vivo, which will help refine
application areas. The feasibility of proposed studies is supported by our published results showing that active
loading of gectosomes reduces passive incorporation of cellular proteins while CRISPR engineering of producer
cells improves EV homogeneity. Three specific aims are: SA1: Develop new producer cell lines via CRISPR-
mediated cell engineering to improve the homogeneity and specificity of gectosomes; SA2: Develop gectosomes
to deliver antibodies or agents designed for promoting targeted protein degradation in cells, and SA3: Determine
adaptive immune responses to gectosomes and general toxicity profiles of gectosomes. The proposed studies
will overcome current limitations in delivering biologics to the intracellular space. The improved delivery platform
will also provide more accessible research tools for the wider scientific community in their endeavors to elucidate
gene function or develop new therapeutic strategies for treatment of human diseases.
项目概要
跨质膜传递大分子并绕过内体降解的技术是
不仅有助于阐明基因功能,而且在治疗方面也具有巨大的潜力。蛋白质,
核酸和核糖核蛋白(RNP)已成为生物医学研究不可或缺的工具,然而,
它们在人类治疗中的应用很大程度上限于调节细胞外空间中的靶标。
只有百分之几的外源性大分子能够穿过细胞屏障并进入
细胞内空间。细胞外囊泡(EV)越来越多地被探索作为潜在的载体
细胞内治疗传递,因为它们在细胞之间天然地运输生物活性分子。细胞衍生
EV 的尺寸和成分各异,因此表现出较低的比活性
感兴趣的货物。为了解决这些问题,我们开发了一种创新的大分子递送系统
基于称为 gectosome(G 蛋白胞外体)的工程化细胞外囊泡,旨在共同
通过分裂 GFP 将水泡性口炎病毒 G 蛋白 (VSV-G) 与生物活性大分子封装在一起
互补。货物与 VSV-G 的可逆束缚提供了高效的货物装载和内体
同时逃脱。 Gectosomes 被证明可以有效地传递催化酶、干扰 RNA、
和 Cas9 RNP 进入细胞质和细胞核,并成功修饰细胞表型。我们的目标是
开发一种多功能且广泛适用的平台技术,可以快速生产高度特异性的产品
能够在体外和体内调节细胞内靶标的gectosome。该应用程序的目的是
通过 CRISPR 提高外泌体的同质性,证明我们的方法的可行性
对生产细胞进行工程设计,并通过创建可传递工程化纳米抗体或泛素的外泌体
E3 在细胞内连接酶 CRBN 以改变蛋白质聚集或降解。我们还将检查宿主免疫
对卵泡体的反应并阐明体内卵泡体递送的功效窗口,这将有助于完善
应用领域。我们发表的结果支持了拟议研究的可行性,表明积极的
基因编辑体的装载减少了细胞蛋白质的被动掺入,而生产者的 CRISPR 工程
细胞提高了 EV 的均匀性。三个具体目标是: SA1:通过 CRISPR 开发新的生产细胞系-
介导细胞工程以提高卵泡体的同质性和特异性; SA2:发育核糖体
递送旨在促进细胞内靶向蛋白质降解的抗体或试剂,以及 SA3:确定
对基因体的适应性免疫反应和基因体的一般毒性特征。拟议的研究
将克服目前将生物制剂输送到细胞内空间的限制。改进的交付平台
还将为更广泛的科学界提供更容易获得的研究工具,以努力阐明
基因功能或开发治疗人类疾病的新治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XUEDONG LIU其他文献
XUEDONG LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XUEDONG LIU', 18)}}的其他基金
Neuron Specific mRNA Transfer With Fusogenic Microvesicles
使用融合微泡进行神经元特异性 mRNA 转移
- 批准号:
10578732 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10544761 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10798752 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Development of a Gectosome Therapy for Cardiovascular Diseases
心血管疾病的基因组疗法的开发
- 批准号:
10384422 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Neuron Specific mRNA Transfer With Fusogenic Microvesicles
使用融合微泡进行神经元特异性 mRNA 转移
- 批准号:
10451377 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10676021 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
- 批准号:
9303654 - 财政年份:2016
- 资助金额:
$ 34.27万 - 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
- 批准号:
9353292 - 财政年份:2015
- 资助金额:
$ 34.27万 - 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
- 批准号:
8913630 - 财政年份:2015
- 资助金额:
$ 34.27万 - 项目类别:
相似国自然基金
肠道区域化代谢物磷酸乙醇胺调控B细胞抗体产生的分子机制研究
- 批准号:32300741
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于纳米抗体的阻燃剂TBBPA-BHEE分析方法及其区域环境污染特征研究
- 批准号:22176075
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
HLA抗体阳性再障骨髓微环境区域免疫稳态失调与重建
- 批准号:81800118
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
B淋巴细胞分泌致病性抗体在HHcy引起早期脂肪组织胰岛素抵抗发病中的作用
- 批准号:31872787
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
MIF活性区域靶向抗体制备及其抗脓毒症机制研究
- 批准号:81601718
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
- 批准号:
10648346 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
Develop an engineered Cas effector for in vivo cell-targeted delivery in the eye to treat autosomal dominant BEST disease
开发工程化 Cas 效应器,用于眼内体内细胞靶向递送,以治疗常染色体显性 BEST 疾病
- 批准号:
10668167 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
Illumination of TAAR2 Location, Function and Regulators
TAAR2 位置、功能和调节器的阐明
- 批准号:
10666759 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
Technologies for High-Throughput Mapping of Antigen Specificity to B-Cell-Receptor Sequence
B 细胞受体序列抗原特异性高通量作图技术
- 批准号:
10734412 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别: