Lipid Trafficking and Metabolism in the Retinal Pigment Epithelium
视网膜色素上皮中的脂质运输和代谢
基本信息
- 批准号:10350995
- 负责人:
- 金额:$ 24.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:Age related macular degenerationApicalAwardBasic ScienceBiochemicalBiologyBlindnessCell NucleusCell RespirationCellsCharacteristicsChoroidConsumptionDataDepositionDevelopment PlansDiseaseDrusenEndoplasmic ReticulumEnsureEnzymesEquilibriumFDA approvedFoundationsGlucoseGoalsHealthHomeostasisHumanImpairmentIngestionLabelLipaseLipid MobilizationLipid PeroxidationLipidsLipoproteinsLysosomesMass Spectrum AnalysisMechanicsMediatingMentorsMentorshipMetabolicMetabolismMethodsMichiganMicroscopyMitochondriaModelingMonitorMorbidity - disease rateNatural regenerationNonesterified Fatty AcidsNonexudative age-related macular degenerationOrganellesPathologicPathway interactionsPhagocytosisPharmacologyPhotoreceptorsPhysiologicalPhysiologyPlayPrincipal InvestigatorProcessRadiolabeledReporterResearchResearch PersonnelResolutionRetinaRetinal DegenerationRetinal DiseasesRoleSmall Interfering RNAStructure of retinal pigment epitheliumTestingTracerUniversitiescareercareer developmentcell typecholesterol analogchoroidal circulationexperienceextracellularflexibilityimprovedinduced pluripotent stem celllipid metabolismlipid transportlipidomicsmitochondrial metabolismnovelnovel therapeuticsoxidationoxidative damageparticlepreventprogramsresponseretinal progenitor cellsmall moleculeuptakevisual cycle
项目摘要
SUMMARY: Age-related macular degeneration (AMD) is marked by retinal pigment epithelial (RPE) lipid dys-
homeostasis, including pathologic extracellular lipid accumulation, impaired mitochondrial lipid metabolism, and
increased lipid peroxidation, a toxic form of lipid oxidative damage. The RPE normally plays an essential role in
retinal lipid homeostasis, consuming and secreting prodigious amounts of lipid. Lipid consumption comes in the
form of a large daily lipid load, including both lipoprotein uptake from the choroid and phagocytosis of lipid-rich
photoreceptor outer segments (OS). Some of this lipid is oxidatively metabolized in the mitochondria, producing
metabolites that energetically support photoreceptors. Lipid oxidative metabolism also minimizes glucose use
by the RPE, allowing glucose to pass unused from the choroid to highly glycolytic photoreceptors. Lipid secretion
is primarily through lipoprotein, some of which supports regeneration of OS and some of which accumulates as
the extracellular deposits typical of AMD. A characteristic of cells facing large lipid loads is the formation of lipid
droplets (LD), intracellular lipid storage organelles that dynamically regulate lipid trafficking, metabolism, and
lipid peroxidation. Specific LD function varies widely between different cell types. RPE LD have been studied in
the context of visual cycle biology, but their physiology and role in maintaining non-retinoid lipid homeostasis in
the RPE is essentially unexplored. This proposal examines the composition, physiology, and role of LD in human
RPE lipid homeostasis. The over-arching hypothesis is two-fold: a) LD can temporarily store a wide-range of
lipids derived from the RPE’s daily lipid load, preventing their lipid peroxidation; and b) lipid released from LD by
specific enzymes is preferentially metabolized in mitochondria rather than secreted. By facilitating lipid oxidative
metabolism over lipid secretion, RPE LD may enhance metabolic support for photoreceptors and decrease the
accumulation of pathologic extracellular lipid seen in AMD. To test the hypothesis, various lipid loads will be fed
to primary- and induced pluripotent stem cell (iPSC)-derived human RPE cultures, with LD composition assessed
by mass spectrometry. The fate of lipids released from LD will be tracked via microscopy, biochemical methods,
and lipidomics. The principal investigator’s long-term goal is to develop the expertise to define intracellular RPE
lipid trafficking pathways that enhance RPE lipid homeostasis and decrease pathologic extracellular lipid
deposition, opening up new therapeutic avenues for AMD. To achieve this goal, the principal investigator’s
career development plan (CDP) focuses on RPE lipid biology, establishing expertise in iPSC-RPE culture,
radiolabeled lipid tracing, high-resolution microscopy, bio-energetic profiling, and lipidomics. The CDP’s
mentorship team takes advantage of deep expertise in lipid biology and lipidomics at University of Michigan and
has a track-record of successfully mentoring K awardees to research independence. The combination of
didactics and hands-on experience in this proposal ensures the investigator will become a successful AMD-
focused clinician with an independent basic science program harnessing RPE lipid biology to understand AMD.
摘要:年龄相关性黄斑变性(AMD)的特点是视网膜色素上皮(RPE)脂质异常。
稳态,包括病理性细胞外脂质积累、线粒体脂质代谢受损,以及
脂质过氧化增加,脂质氧化损伤的一种有毒形式,RPE 通常在其中发挥重要作用。
视网膜脂质稳态,消耗和分泌大量脂质。
每日大量脂质负荷的形式,包括从脉络膜摄取脂蛋白和富含脂质的吞噬作用
光感受器外节(OS)中的一些脂质在线粒体中氧化代谢,产生。
大力支持光感受器的代谢物也最大限度地减少了葡萄糖的使用。
通过 RPE,使未使用的葡萄糖从脉络膜传递到高度糖酵解的脂质分泌物。
主要是通过脂蛋白,其中一些支持操作系统的再生,另一些则积累为
AMD 的典型细胞外沉积物 面临大量脂质负荷的细胞的一个特征是脂质的形成。
液滴(LD),动态调节脂质运输、代谢和细胞内脂质储存细胞器
不同细胞类型之间的特定 LD 功能差异很大。
视觉周期生物学的背景,但它们的生理学和在维持非视黄醇脂质稳态中的作用
RPE 本质上尚未被探索过。该提案研究了 LD 在人类中的组成、生理学和作用。
RPE 脂质稳态的总体假设有两个:a) LD 可以暂时储存多种脂质。
来自 RPE 每日脂质负荷的脂质,防止其脂质过氧化;和 b) 从 LD 释放的脂质;
特定的酶优先在线粒体中代谢,而不是通过促进脂质氧化来分泌。
代谢超过脂质分泌,RPE LD 可能增强对光感受器的代谢支持并降低
AMD 中观察到的病理性细胞外脂质积累 为了检验这一假设,将喂食不同的脂质负荷。
原代和诱导多能干细胞 (iPSC) 来源的人 RPE 培养物,并评估 LD 成分
LD 释放的脂质的命运将通过显微镜、生化方法进行追踪。
主要研究者的长期目标是开发定义细胞内 RPE 的专业知识。
增强 RPE 脂质稳态并减少病理性细胞外脂质的脂质运输途径
沉积,为 AMD 开辟新的治疗途径。
职业发展计划 (CDP) 重点关注 RPE 脂质生物学,建立 iPSC-RPE 培养方面的专业知识,
放射性标记脂质追踪、高分辨率显微镜、生物能量分析和脂质组学。
导师团队利用密歇根大学在脂质生物学和脂质组学方面的深厚专业知识和
拥有成功指导 K 获奖者独立研究的记录。
本提案中的教学和实践经验确保研究者成为一名成功的 AMD-
专注于临床医生,拥有独立的基础科学项目,利用 RPE 脂质生物学来了解 AMD。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Matthew-Lewis Miller其他文献
Jason Matthew-Lewis Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Matthew-Lewis Miller', 18)}}的其他基金
Lipid Trafficking and Metabolism in the Retinal Pigment Epithelium
视网膜色素上皮中的脂质运输和代谢
- 批准号:
10557192 - 财政年份:2022
- 资助金额:
$ 24.01万 - 项目类别:
相似国自然基金
富集于上皮细胞膜顶端转录本magu-2的主动运输机制及功能研究
- 批准号:32300637
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
马铃薯匍匐茎顶端弯钩发育过程中赤霉素介导蛋白质磷酸化调控机制
- 批准号:32360091
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
不同高度木本竹子因持续干旱而顶端枯死的生理机制
- 批准号:32360258
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
胞裂蛋白Sep4介导菌丝顶端多极性生长调控灰葡萄孢侵染垫起始发育的机制
- 批准号:32372489
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥Class II TCP转录因子调控雌蕊顶端命运决定的分子机制
- 批准号:32300291
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing neuroinflammation in Alzheimer's disease with NLRP3 PET radiotracers
使用 NLRP3 PET 放射性示踪剂探测阿尔茨海默病的神经炎症
- 批准号:
10659920 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
US-Nigerian Cancer Control Center for Research on Implementation Science and Equity (C3-RISE)
美国-尼日利亚癌症控制实施科学与公平研究中心 (C3-RISE)
- 批准号:
10738439 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Defining the Mitotic Role of Chk2 for the Treatment of Pancreatic Cancer
确定 Chk2 在胰腺癌治疗中的有丝分裂作用
- 批准号:
10679609 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Structural regulation of megalin recycling in the proximal tubule
近曲小管巨蛋白循环的结构调节
- 批准号:
10802792 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别: