Uncovering the neural architecture underlying decisions abstracted from movements
揭示从运动中抽象出来的决策背后的神经架构
基本信息
- 批准号:10337282
- 负责人:
- 金额:$ 41.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-13 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnimalsArchitectureAreaBehaviorBiophysicsBrainBrain DiseasesBrain regionCharacteristicsClassificationCognitionCognitive deficitsComplexCoupledDataDecision MakingDevelopmentDiagnosisDiseaseDivorceElectrocorticogramElectrophysiology (science)EpilepsyEvent-Related PotentialsExhibitsEye MovementsFunctional Magnetic Resonance ImagingFutureGoalsHandHealthHomologous GeneHumanImpaired cognitionInvestigationJointsKnowledgeLateralLinkMacacaMacaca mulattaMathematicsMeasuresMedialMethodologyMethodsModalityModelingMonkeysMotorMovementNeural Network SimulationNeuronsParietalParietal LobePatientsPhysiologicalPlayPopulationPrefrontal CortexPreparationProcessReportingResearchResponse to stimulus physiologyRoleSaccadesScalp structureSensorySignal TransductionSourceTechniquesTestingTimeUrsidae Familyanalogbasebiophysical modelcognitive capacitycognitive functionflexibilityinnovationinsightintraparietal sulcusmathematical modelmultimodalityneural circuitneural networkneuroimagingneuromechanismneurophysiologyneurosurgeryneurotransmissionnonhuman primatenovelrelating to nervous systemresponsetemporal measurementthought control
项目摘要
Project Abstract
Decision making is a core component of normal and abnormal cognitive function. Understanding the
neural mechanisms of decision-making will lead to advances in the diagnosis, classification and future
treatments of disorders affecting thought and control. Mathematical models of the decision process,
based on bounded evidence accumulation, have been developed over decades and are being
increasingly leveraged to gain deeper insights into the origins of cognitive deficits arising from a range
of brain disorders. However, major gaps remain in our understanding of the neural mechanisms
responsible for decision-making, thereby limiting the validity and utility of the models. A successful line
of research on perceptual decision-making has established that neurons in the parietal and prefrontal
cortex of the rhesus monkey (Macaca mulatta) encode the accumulating evidence bearing on the
alternatives. These observations are mainly from neurons in areas of the macaque cortex that are
associated with preparation of the actions (e.g. hand or eye movements) for reporting the decision
alternatives. However, decisions are often formed without knowledge of what actions they might call
for, and under such conditions, effector-selective neural activity does not appear to reflect accumulation
dynamics. Recent studies, have identified a novel ‘abstract’ decision signal in non-invasive
electrophysiological (EEG) recordings from human decision makers. The signal, termed the central
parietal positivity (CPP), represents the accumulation of evidence for decisions irrespective of the
sensory or motor requirements of the task, hence the designation, abstract. The neural circuits that
give rise to the CPP are likely to explain the capacity to flexibly link decisions to various actions
depending on context and goals. However, because the signal has thus far only been observed in EEG
recordings from humans, its neural basis is unknown. The proposed aims will (1) establish the neural
underpinnings of the CPP by establishing its analogues in single-neuron, multi-neuron, local field
potentials and EEG of the macaque and (2) localizing its source in humans through the use of
neuroimaging, and electrocorticography (ECoG) from patients undergoing neurosurgery. Both aims
draw on an integrated computational effort that combines biophysical modeling, neural networks, and
mathematical characterization of the decision process. The knowledge gained through these
investigations will increase our understanding of core cognitive capacities whose deficiency contributes
to major brain disorders while bridging long-standing methodological gaps in human versus non-human
animal investigations.
项目摘要
决策是理解正常和异常认知功能的核心组成部分。
决策的神经机制将导致诊断、分类和未来的进步
影响决策过程的数学模型的治疗,
基于有限的证据积累,已经发展了数十年,并且正在被
越来越多地利用来更深入地了解一系列认知缺陷的根源
然而,我们对神经机制的理解仍然存在重大差距。
负责决策,从而限制了模型的有效性和实用性。
对知觉决策的研究表明,顶叶和前额叶的神经元
恒河猴(Macaca mulatta)的皮质编码了与
这些观察结果主要来自猕猴皮层区域的神经元。
与报告决定的行动准备(例如手或眼的运动)相关
然而,决策往往是在不知道他们可能采取什么行动的情况下做出的。
因为,在这种条件下,效应器选择性神经活动似乎并不反映积累
最近的研究发现了一种新的非侵入性“抽象”决策信号。
来自人类决策者的电生理(EEG)记录信号,称为中枢。
顶叶积极性(CPP),代表决策证据的积累,无论
任务的感觉或运动要求,因此称为“神经回路”。
CPP 的产生可能解释了将决策与各种行动灵活联系起来的能力
然而,由于迄今为止仅在脑电图上观察到该信号。
来自人类的录音,其神经基础未知。拟议的目标将(1)建立神经网络。
通过在单神经元、多神经元、局部领域建立类似物来支撑 CPP
猕猴的电位和脑电图,以及(2)通过使用将其来源定位于人类
对接受神经外科手术的患者进行神经影像学和皮质电图检查(ECoG)。
利用综合计算工作,结合了生物物理建模、神经网络和
通过这些获得的知识的数学特征。
调查将增加我们对核心认知能力的理解,其缺陷会导致
解决主要的脑部疾病,同时弥合人类与非人类之间长期存在的方法论差距
动物调查。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan Bickel其他文献
Stephan Bickel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan Bickel', 18)}}的其他基金
Dynamic circuit motifs underlying multimodal interactions in primate auditory cortex
灵长类听觉皮层多模态相互作用的动态电路基序
- 批准号:
10586804 - 财政年份:2022
- 资助金额:
$ 41.09万 - 项目类别:
Dynamic circuit motifs underlying multimodal interactions in primate auditory cortex
灵长类听觉皮层多模态相互作用的动态电路基序
- 批准号:
10705822 - 财政年份:2022
- 资助金额:
$ 41.09万 - 项目类别:
Uncovering the neural architecture underlying decisions abstracted from movements
揭示从运动中抽象出来的决策背后的神经架构
- 批准号:
10558587 - 财政年份:2020
- 资助金额:
$ 41.09万 - 项目类别:
相似国自然基金
十年禁渔对赤水河底栖动物群落多样性及其维持机制的影响
- 批准号:32301370
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模拟增温对高寒草甸节肢动物“晨起”时间的影响及其生态学效应
- 批准号:32301391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
降水变化下土壤动物协作效应对土壤有机质形成过程的影响
- 批准号:42307409
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 41.09万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 41.09万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 41.09万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 41.09万 - 项目类别: