The Role and Mechanisms of UBQLN2-mediated Phase Transitions in the Assembly and Disassembly of Biomolecular Condensates
UBQLN2介导的相变在生物分子凝聚体组装和分解中的作用和机制
基本信息
- 批准号:10334494
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAmyotrophic Lateral SclerosisAutophagocytosisBehaviorBindingBiologicalBiologyBiophysical ProcessCell Culture TechniquesCell physiologyCellsCellular Stress ResponseCharacteristicsClientCytoplasmic InclusionDegradation PathwayDiseaseFoundationsGenetic TranscriptionGoalsImageIn VitroLeadLengthLibrariesLinkLiquid substanceMaintenanceMammalian CellMediatingMicroscopyModelingMolecularMonitorMorphologyMutationNMR SpectroscopyNatureNeurodegenerative DisordersOrganellesPathway interactionsPhasePhase TransitionPhysiologicalPolyubiquitinProcessPropertyProteinsQuality ControlRNA-Binding ProteinsRegulationResearchResolutionRoleSignal TransductionSignaling ProteinSolidStressSystemTertiary Protein StructureTherapeuticTimeUbiquitinaqueousbasedeletion librarydesignexperimental studyin vivointermolecular interactionmembermulticatalytic endopeptidase complexmutantphysical processprotein TDP-43protein functionproteostasisreceptorreceptor bindingreconstitutionrecruitresponsespatiotemporalstress granule
项目摘要
PROJECT SUMMARY/ABSTRACT:
Biomolecular condensates are dynamic, membraneless compartments that spatiotemporally regulate a
myriad of cellular functions from gene transcription to cellular stress response. Liquid-liquid phase
separation (LLPS) is increasingly appreciated as the biophysical mechanism for how these condensates
assemble. Key to proper condensate function is the maintenance of their dynamics and
assembly/disassembly processes, but little is known about these mechanisms. Hints are provided from
disease states whereby condensates may undergo liquid-to-solid transitions into cytoplasmic inclusions
that contain protein quality control components and are characteristic of proteinopathies such as
amyotrophic lateral sclerosis. We have identified UBQLN2, a member of ubiquitin-mediated protein
quality control systems, as a contributor to condensate function. We recently showed that UBQLN2 forms
condensates in vitro, and is recruited to stress granules, cytoplasmic condensates that form in response
to stress. The multitude of UBQLN2 functions are driven through interactions with proteasomal subunits,
polyubiquitin chains, and client proteins. Ubiquitin and polyubiquitin, biological signals for the
maintenance of protein homeostasis through degradation and autophagy, drive disassembly of UBQLN2
condensates in vitro. These observations have broad implications for how phase separation mechanisms
regulate the function of protein quality control systems. In this project, we aim to identify the molecular
and cellular mechanisms that drive how UBQLN2 condensates assemble and disassemble. Aim 1
determines how domain-domain interactions promote or inhibit phase separation of UBQLN2 via
construction of phase diagrams for constructs from a combination of UBQLN2 domain deletion and
disease-linked mutations. These domain deletions will be used to mimic the different “states” of UBQLN2
when specific domains are engaged with binding partners and unable to contribute to LLPS. We will use
UBQLN2 disease-linked mutations as a nature-provided library to elucidate how intra- and intermolecular
UBQLN2 interactions promote or inhibit condensate assembly and alter condensate morphology and
material properties both in vitro and in mammalian cell culture models. Aim 2 quantifies how UBQLN2
condensates are affected by UBQLN2 engagement with protein quality control components, including
proteasomal receptors, client proteins, and different types of polyubiquitin chains. We monitor these
effects in vitro and with designed mutants in vivo. Importantly, we develop a reconstituted UBQLN2
condensate model to quantify the parameters of how polyubiquitin and polyubiquitinated substrates
engage with UBQLN2 to disassemble condensates. These studies will lay the foundation for determining
the physiological roles of phase separation as it pertains to protein homeostasis through ubiquitin-
mediated pathways.
项目摘要/摘要:
生物分子凝聚物是动态的、无膜的隔室,可以时空调节
从基因转录到细胞应激反应的无数细胞功能。
分离(LLPS)作为这些冷凝物如何产生的生物物理机制越来越受到重视。
正确凝结物功能的关键是维持其动态和性能。
组装/拆卸过程,但对这些机制知之甚少。
疾病状态,其中凝结物可能经历液体到固体转变为细胞质内含物
含有蛋白质质量控制成分,是蛋白质病的特征,例如
我们已经鉴定出 UBQLN2,泛素介导蛋白的成员。
质量控制系统,作为凝析油功能的贡献者,我们最近证明了 UBQLN2 的形成。
体外凝结物,并被募集到应激颗粒,响应形成的细胞质凝结物
UBQLN2 的多种功能是通过与蛋白酶体亚基的相互作用来驱动的。
多聚泛素链、泛素和多聚泛素、生物信号。
通过降解和自噬维持蛋白质稳态,驱动 UBQLN2 解体
这些观察结果对于相分离机制具有广泛的意义。
调节蛋白质质量控制系统的功能在这个项目中,我们的目标是识别分子。
以及驱动 UBQLN2 凝结组装和分解的细胞机制。
确定域-域相互作用如何促进或抑制 UBQLN2 的相分离
构建 UBQLN2 结构域删除和组合构建体的相图
这些结构域缺失将用于模拟 UBQLN2 的不同“状态”。
当特定域与绑定合作伙伴交互且无法为 LLPS 做出贡献时,我们将使用。
UBQLN2 疾病相关突变作为自然提供的库,用于阐明分子内和分子间如何
UBQLN2 相互作用促进或抑制冷凝物组装并改变冷凝物形态和
目标 2 量化 UBQLN2 的体外和哺乳动物细胞培养模型中的材料特性。
冷凝物受到 UBQLN2 与蛋白质质量控制成分结合的影响,包括
我们监测蛋白酶体受体、客户蛋白和不同类型的多聚泛素链。
重要的是,我们开发了重组的 UBQLN2。
凝聚模型来量化多泛素和多泛素化底物的参数
与 UBQLN2 合作分解凝结物这些研究将为确定奠定基础。
相分离的生理作用,因为它涉及通过泛素实现的蛋白质稳态
介导途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Antonio Castaneda其他文献
Carlos Antonio Castaneda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Antonio Castaneda', 18)}}的其他基金
The Role and Mechanisms of UBQLN2-mediated Phase Transitions in the Assembly and Disassembly of Biomolecular Condensates
UBQLN2介导的相变在生物分子凝聚体组装和分解中的作用和机制
- 批准号:
10551259 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
The Role and Mechanisms of UBQLN2-mediated Phase Transitions in the Assembly and Disassembly of Biomolecular Condensates
UBQLN2介导的相变在生物分子凝聚体组装和分解中的作用和机制
- 批准号:
10582154 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
The Role and Mechanisms of UBQLN2-mediated Phase Transitions in the Assembly and Disassembly of Biomolecular Condensates
UBQLN2介导的相变在生物分子凝聚体组装和分解中的作用和机制
- 批准号:
10117270 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
叶黄素调控脂代谢紊乱所致年龄相关性黄斑病变的血-视网膜屏障损伤机制研究
- 批准号:82373570
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Development of CM-CS1 CAR Treg to Treat Amyotrophic Lateral Sclerosis (ALS)
开发 CM-CS1 CAR Treg 治疗肌萎缩侧索硬化症 (ALS)
- 批准号:
10696512 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Transcriptional regulation over neurogenesis of cortical output neuron segmental identity and diversity
皮质输出神经元节段同一性和多样性的神经发生的转录调控
- 批准号:
10638147 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
The Impact of Beta- and Gamma-synucleins on Alpha-synuclein's Synaptic Function
β 和 γ 突触核蛋白对 α 突触核蛋白突触功能的影响
- 批准号:
10830522 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
A novel mitochondria-to-lysosome stress signaling pathway in degenerative disease and aging
退行性疾病和衰老中一种新的线粒体到溶酶体应激信号通路
- 批准号:
10722759 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Unraveling the Mechanisms of Neurodegeneration in TBCK Encephaloneuronopathy
揭示 TBCK 脑神经病神经变性的机制
- 批准号:
10700602 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别: