The role of distributional reinforcement learning in human neurons during impulsive choices
分布式强化学习在人类神经元冲动选择过程中的作用
基本信息
- 批准号:10335061
- 负责人:
- 金额:$ 50.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-03 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAmygdaloid structureAnimalsAnteriorAreaArtificial IntelligenceBasic ScienceBehaviorBehavior DisordersBehavioralBrainBrain StemCategoriesChoice BehaviorCodeColorComplexCorpus striatum structureDataDecision MakingDevelopmentDopamineDopamine ReceptorEpilepsyExhibitsFeedbackFutureGoalsHippocampus (Brain)HumanImpulse Control DisordersImpulsive BehaviorImpulsivityIntractable EpilepsyKnowledgeLearningLinkMathematicsMeasuresMedicalMental HealthMental disordersModelingMonitorMusNeuronsNeurosciencesOrganismOutcomePatientsPerformancePopulationProbabilityPsychiatric therapeutic procedurePsychological reinforcementResearchReversal LearningRewardsRiskRoleSignal TransductionSubstance Use DisorderTemporal LobeTestingTimeTranslatingUpdateWorkanalogbasecingulate cortexdopaminergic neuronexpectationexperienceexperimental studyhuman subjectimprovedlearning outcomeneuromechanismneuropsychiatric disorderneuropsychiatrynoveloptimismrelating to nervous systemresponse
项目摘要
ABSTRACT
Recent developments in artificial intelligence and neuroscience have revealed neural codes for reinforcement
that represent predictions of a range of possible future reward outcomes, rather than a singular expected value.
This distributional reinforcement learning has enabled improved performance of artificial agents and has
straightforward implications for numerous neuropsychiatric disorders, particularly impulse control and substance
use disorders. This proposal aims to leverage our experience recording neuronal activity from the brains of
human neurosurgical patients in order to translate these recordings in a novel research direction: to understand
the mechanisms of human choice behavior. We will determine where distributional codes exist in the human
prefrontal and mesial temporal cortices, and how those codes are expressed dynamically in time as humans
make impulsive choices during the Balloon Analog Risk Task (BART) and a probabilistic reversal learning task.
The results of these experiments will have both important basic scientific implications and will begin to address
how distributional reinforcement learning in the human brain contributes to impulsive choices.
In order to begin translating this new area of knowledge to understand the underpinnings of human decisions,
we will first establish the presence of distributional reinforcement learning in four brain areas that comprise a
human decision-making circuit: Orbitofrontal Cortex, Anterior Cingulate Cortex, Amygdala, and Hippocampus.
Specific Aim 1 will test the three essential predictions of distributional RL: whether populations of neurons in
each of these brain areas exhibit 1) asymmetric scaling of reward prediction errors, 2) diverse reversal points,
and 3) that prediction error asymmetries and reversal points correlate across neurons. Specific Aim 2 seeks to
decode BART reward prediction distributions from neurons in the aforementioned brain areas and determine
how changes in BART reward distributions correlate with the propensity to make impulsive choices. Specific
Aim 3 will test how diversity in optimism and pessimism in each neuron recorded from the aforementioned brain
areas correlates with valuation or devaluation across trials.
The completion of these aims will constitute important basic research findings in discovering distributional RL in
the human prefrontal and mesial temporal cortices. By uncovering neural population codes that underlie
potentially impulsive choices in human decision-making circuits, these experiments also address fundamental
neural mechanisms underlying impulsive choices. This issue is central to addressing important problems for
contemporary mental health including substance use disorder and a many other neuropsychiatric disorders.
These findings will have readily translatable implications for improving targeted electrical therapies for psychiatric
disorders.
抽象的
人工智能和神经科学的最新发展揭示了强化的神经代码
代表对一系列可能的未来奖励结果的预测,而不是单一的期望值。
这种分布式强化学习提高了人工智能体的性能,并且
对许多神经精神疾病的直接影响,特别是冲动控制和物质
使用障碍。该提案旨在利用我们记录大脑神经元活动的经验
人类神经外科患者,以便将这些录音转化为一个新的研究方向:理解
人类选择行为的机制。我们将确定人类中分布代码的存在位置
前额叶和内侧颞叶皮质,以及这些代码如何随着人类的时间动态表达
在气球模拟风险任务 (BART) 和概率逆转学习任务中做出冲动选择。
这些实验的结果将具有重要的基本科学意义,并将开始解决
人脑中的分布式强化学习如何促进冲动选择。
为了开始转化这一新的知识领域来理解人类决策的基础,
我们将首先在四个大脑区域中确定分布式强化学习的存在,这些区域包括
人类决策回路:眶额皮层、前扣带皮层、杏仁核和海马体。
具体目标 1 将测试分布 RL 的三个基本预测:神经元群体是否
每个大脑区域都表现出 1) 奖励预测误差的不对称缩放,2) 不同的逆转点,
3)预测误差不对称性和反转点在神经元之间相关。具体目标 2 旨在
解码上述大脑区域神经元的 BART 奖励预测分布并确定
BART 奖励分配的变化如何与做出冲动选择的倾向相关。具体的
目标 3 将测试从上述大脑记录的每个神经元的乐观和悲观多样性如何
区域与试验中的估值或贬值相关。
这些目标的完成将构成发现分布式强化学习的重要基础研究成果。
人类前额叶皮质和内侧颞叶皮质。通过揭示背后的神经群体密码
人类决策回路中潜在的冲动选择,这些实验还解决了基本问题
冲动选择背后的神经机制。这个问题对于解决重要问题至关重要
当代心理健康,包括物质使用障碍和许多其他神经精神疾病。
这些发现对于改善精神科靶向电疗法具有易于转化的意义
失调。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elliot H Smith其他文献
Elliot H Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elliot H Smith', 18)}}的其他基金
The role of distributional reinforcement learning in human neurons during impulsive choices
分布式强化学习在人类神经元冲动选择过程中的作用
- 批准号:
10561650 - 财政年份:2022
- 资助金额:
$ 50.98万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Circuit control of motivation to take and seek alcohol
饮酒和寻求酒精动机的电路控制
- 批准号:
10753712 - 财政年份:2023
- 资助金额:
$ 50.98万 - 项目类别:
Psilocybin and Affective Function in Chronic Lower Back Pain and Depression
裸盖菇素与慢性腰痛和抑郁症的情感功能
- 批准号:
10626449 - 财政年份:2023
- 资助金额:
$ 50.98万 - 项目类别:
Anterior Insula Projections for Alcohol Drinking/Anxiety Interactions in Female and Male Rats
雌性和雄性大鼠饮酒/焦虑相互作用的前岛叶预测
- 批准号:
10608759 - 财政年份:2023
- 资助金额:
$ 50.98万 - 项目类别:
Thalamo-prefrontal circuit maturation during adolescence
丘脑-前额叶回路在青春期成熟
- 批准号:
10585031 - 财政年份:2023
- 资助金额:
$ 50.98万 - 项目类别:
Maternal Childhood Maltreatment-Influenced Prenatal Programming of Early Brain-Behavior and Risk for Future Psychopathology
母亲童年虐待影响的早期大脑行为的产前编程和未来精神病理学的风险
- 批准号:
10740663 - 财政年份:2023
- 资助金额:
$ 50.98万 - 项目类别: