Early Evaluation of Ovarian Cancer Prognosis by Fusing Radiographic and Histopathologic Imaging Information

通过融合放射学和组织病理学成像信息对卵巢癌预后进行早期评估

基本信息

  • 批准号:
    10334987
  • 负责人:
  • 金额:
    $ 24.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-15 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Project 3: Early Evaluation of Ovarian Cancer Prognosis by Fusing Radiographic and Histopathologic Imaging Information ABSTRACT As the most aggressive malignancy in gynecologic oncology, ovarian cancer is highly heterogeneous and the tumor response to a specific chemotherapy vary significantly among patients. However, due to the lack of accurate clinical markers to stratify patients and predict who can and cannot benefit from certain types of chemotherapy drugs or methods, efficacy of treating ovarian cancer patients using chemotherapy is low. In order to address and help solve this clinical challenge, the overarching objective of this project is to develop and validate a new strategy for early prediction of tumor response to chemotherapy using a novel image marker generated by a machine learning model that is trained using quantitative image features computed from computer tomography (CT) and digital histopathology images. Based on the concept of Radiomics, Pathomics and our encouraging preliminary studies, we hypothesize that the state-of-the-art data analysis technology can fuse the valuable prognostic information from both radiographic and pathological images to generate a new image marker, which has a high degree of association with the chemotherapy response of ovarian cancer patients. To validate this hypothesis, we propose 4 specific aims. Aim 1: Based on a diverse patient database at the Stephenson Cancer Center, we will assemble one retrospective and one prospective dataset, containing a total of 420 ovarian cancer patients who have undergone chemotherapies. The dataset will include CT images, histopathological images of tumor samples and other related clinical information of each patient. Aim 2: We will explore and identify tumor heterogeneity-related images features computed from both CT and pathology images after applying a new hybrid image processing scheme to accurately segment tumor volume and cancer cells. Aim 3: We will apply feature selection methods on the initial CT/pathology feature pools to identify two optimal feature vectors. Then, a prediction model (i.e., Bayesian belief network) will be trained to fuse optimal feature vectors and other clinical variables to predict tumor response to therapy at early stage. Aim 4: We will conduct a pilot prospective study to evaluate performance and robustness of the prediction model. Several statistical methods (i.e. Cox proportional hazards analysis, receiver operation characteristic curve, confusion matrix) will be used to evaluate the performance improvement by fusing the CT and pathology image features. We will also validate the added prognostic value provided by the new model in the context of the existing markers. In order to accomplish the proposed aims and research tasks, an interdisciplinary team is assembled, which includes experts in medical imaging, gynecologic oncology, radiology and pathology from the University of Oklahoma. If successful, this project can produce the essential preliminary data and scientific evidence to support the research project leader (RPL) to apply for a more comprehensive research project (i.e., NIH R01) to further optimize and validate a first-of-its-kind, robust, easy-to-use decision-making support tool, which can help clinicians (i.e., radiologists and oncologists) determine the optimal cancer treatment strategy for different patients.
项目 3:通过融合放射学和组织病理学来早期评估卵巢癌预后 影像信息 抽象的 作为妇科肿瘤中最具侵袭性的恶性肿瘤,卵巢癌具有高度异质性和 不同患者的肿瘤对特定化疗的反应差异很大。然而,由于缺乏 准确的临床标志物对患者进行分层并预测谁可以或不能从某些类型的治疗中受益 化疗药物或方法,采用化疗治疗卵巢癌患者的疗效较低。为了 为了应对和帮助解决这一临床挑战,该项目的总体目标是开发和 使用新型图像标记验证早期预测肿瘤对化疗反应的新策略 由机器学习模型生成,该模型使用计算得出的定量图像特征进行训练 计算机断层扫描 (CT) 和数字组织病理学图像。基于放射组学、病理组学的概念 以及我们令人鼓舞的初步研究,我们假设最先进的数据分析技术可以 融合放射线和病理图像中有价值的预后信息,生成新的 影像标记物,与卵巢癌化疗反应高度相关 患者。为了验证这一假设,我们提出了 4 个具体目标。目标 1:基于多样化的患者数据库 在史蒂芬森癌症中心,我们将收集一份回顾性数据集和一份前瞻性数据集,其中包含 共有420名卵巢癌患者接受过化疗。数据集将包括 CT 图像、 每个患者的肿瘤样本的组织病理学图像和其他相关临床信息。目标2:我们将 探索和识别从 CT 和病理图像计算得出的肿瘤异质性相关图像特征 应用新的混合图像处理方案来准确分割肿瘤体积和癌细胞后。 目标 3:我们将在初始 CT/病理特征池上应用特征选择方法,以确定两个最佳特征 特征向量。然后,将训练预测模型(即贝叶斯信念网络)以融合最佳特征 向量和其他临床变量来预测早期肿瘤对治疗的反应。目标4:我们将进行 一项试点前瞻性研究,旨在评估预测模型的性能和稳健性。几项统计 方法(即 Cox 比例风险分析、受试者工作特征曲线、混淆矩阵)将 用于通过融合 CT 和病理图像特征来评估性能改进。我们还将 在现有标记的背景下验证新模型提供的附加预后价值。为了 为了完成拟议的目标和研究任务,组建了一个跨学科团队,其中包括 来自俄克拉荷马大学的医学影像、妇科肿瘤学、放射学和病理学专家。如果 成功后,该项目可以提供必要的初步数据和科学证据来支持研究 项目负责人(RPL)申请更全面的研究项目(即NIH R01),以进一步优化和 验证首创的、强大的、易于使用的决策支持工具,它可以帮助临床医生(即, 放射科医生和肿瘤学家)为不同的患者确定最佳的癌症治疗策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuchen Qiu其他文献

Yuchen Qiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuchen Qiu', 18)}}的其他基金

Early Evaluation of Ovarian Cancer Prognosis by Fusing Radiographic and Histopathologic Imaging Information
通过融合放射学和组织病理学成像信息对卵巢癌预后进行早期评估
  • 批准号:
    10573293
  • 财政年份:
    2022
  • 资助金额:
    $ 24.49万
  • 项目类别:

相似国自然基金

地表与大气层顶短波辐射多分量一体化遥感反演算法研究
  • 批准号:
    42371342
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
  • 批准号:
    72361020
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
  • 批准号:
    52372329
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高效非完全信息对抗性团队博弈求解算法研究
  • 批准号:
    62376073
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
  • 批准号:
    10575550
  • 财政年份:
    2023
  • 资助金额:
    $ 24.49万
  • 项目类别:
K-mer indexing for pan-genome reference annotation
用于泛基因组参考注释的 K-mer 索引
  • 批准号:
    10793082
  • 财政年份:
    2023
  • 资助金额:
    $ 24.49万
  • 项目类别:
Early Evaluation of Ovarian Cancer Prognosis by Fusing Radiographic and Histopathologic Imaging Information
通过融合放射学和组织病理学成像信息对卵巢癌预后进行早期评估
  • 批准号:
    10573293
  • 财政年份:
    2022
  • 资助金额:
    $ 24.49万
  • 项目类别:
Development of a low-cost epigenetic screening assay for Pap specimen-based detection of early-stage ovarian cancer in high-risk women
开发一种低成本表观遗传筛查方法,用于基于巴氏标本的高危女性早期卵巢癌检测
  • 批准号:
    10678833
  • 财政年份:
    2021
  • 资助金额:
    $ 24.49万
  • 项目类别:
K-mer indexing for pan-genome reference annotation
用于泛基因组参考注释的 K-mer 索引
  • 批准号:
    10093116
  • 财政年份:
    2020
  • 资助金额:
    $ 24.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了