Early Evaluation of Ovarian Cancer Prognosis by Fusing Radiographic and Histopathologic Imaging Information
通过融合放射学和组织病理学成像信息对卵巢癌预后进行早期评估
基本信息
- 批准号:10334987
- 负责人:
- 金额:$ 24.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project 3: Early Evaluation of Ovarian Cancer Prognosis by Fusing Radiographic and Histopathologic
Imaging Information
ABSTRACT
As the most aggressive malignancy in gynecologic oncology, ovarian cancer is highly heterogeneous and
the tumor response to a specific chemotherapy vary significantly among patients. However, due to the lack of
accurate clinical markers to stratify patients and predict who can and cannot benefit from certain types of
chemotherapy drugs or methods, efficacy of treating ovarian cancer patients using chemotherapy is low. In order
to address and help solve this clinical challenge, the overarching objective of this project is to develop and
validate a new strategy for early prediction of tumor response to chemotherapy using a novel image marker
generated by a machine learning model that is trained using quantitative image features computed from
computer tomography (CT) and digital histopathology images. Based on the concept of Radiomics, Pathomics
and our encouraging preliminary studies, we hypothesize that the state-of-the-art data analysis technology can
fuse the valuable prognostic information from both radiographic and pathological images to generate a new
image marker, which has a high degree of association with the chemotherapy response of ovarian cancer
patients. To validate this hypothesis, we propose 4 specific aims. Aim 1: Based on a diverse patient database
at the Stephenson Cancer Center, we will assemble one retrospective and one prospective dataset, containing
a total of 420 ovarian cancer patients who have undergone chemotherapies. The dataset will include CT images,
histopathological images of tumor samples and other related clinical information of each patient. Aim 2: We will
explore and identify tumor heterogeneity-related images features computed from both CT and pathology images
after applying a new hybrid image processing scheme to accurately segment tumor volume and cancer cells.
Aim 3: We will apply feature selection methods on the initial CT/pathology feature pools to identify two optimal
feature vectors. Then, a prediction model (i.e., Bayesian belief network) will be trained to fuse optimal feature
vectors and other clinical variables to predict tumor response to therapy at early stage. Aim 4: We will conduct
a pilot prospective study to evaluate performance and robustness of the prediction model. Several statistical
methods (i.e. Cox proportional hazards analysis, receiver operation characteristic curve, confusion matrix) will
be used to evaluate the performance improvement by fusing the CT and pathology image features. We will also
validate the added prognostic value provided by the new model in the context of the existing markers. In order
to accomplish the proposed aims and research tasks, an interdisciplinary team is assembled, which includes
experts in medical imaging, gynecologic oncology, radiology and pathology from the University of Oklahoma. If
successful, this project can produce the essential preliminary data and scientific evidence to support the research
project leader (RPL) to apply for a more comprehensive research project (i.e., NIH R01) to further optimize and
validate a first-of-its-kind, robust, easy-to-use decision-making support tool, which can help clinicians (i.e.,
radiologists and oncologists) determine the optimal cancer treatment strategy for different patients.
项目3:通过融合射线照相和组织病理学对卵巢癌预后的早期评估
成像信息
抽象的
作为妇科肿瘤学中最具侵略性的恶性肿瘤,卵巢癌是高度异质性的,并且
患者对特定化学疗法的肿瘤反应差异很大。但是,由于缺乏
准确的临床标记,以分层患者并预测谁可以也不能从某些类型的
化学疗法药物或方法,使用化学疗法治疗卵巢癌患者的功效很低。为了
为了解决和帮助解决这一临床挑战,该项目的总体目标是发展和
使用新型图像标记验证一种新的策略,用于早期预测肿瘤对化学疗法的反应
由机器学习模型生成的模型,该模型是使用定量图像功能训练的
计算机断层扫描(CT)和数字组织病理学图像。基于放射线学的概念
以及我们令人鼓舞的初步研究,我们假设最先进的数据分析技术可以
融合来自射线照相和病理图像的有价值的预后信息,以产生新的
图像标记,与卵巢癌的化学疗法反应具有高度关联
患者。为了验证这一假设,我们提出了4个具体目标。目标1:基于多样化的患者数据库
在斯蒂芬森癌症中心,我们将组装一个回顾性和一个前瞻性数据集,其中包含
共有420名接受化学疗法的卵巢癌患者。数据集将包括CT图像,
肿瘤样品和每个患者其他相关临床信息的组织病理学图像。目标2:我们将
探索和识别从CT和病理图像计算的肿瘤异质性的图像特征
在应用新的杂种图像处理方案以准确分割肿瘤体积和癌细胞之后。
AIM 3:我们将在初始CT/病理特征池上应用功能选择方法来识别两个最佳
功能向量。然后,将训练一个预测模型(即贝叶斯信仰网络)以融合最佳功能
向量和其他临床变量预测早期肿瘤对治疗的反应。目标4:我们将进行
一项试点的前瞻性研究,以评估预测模型的性能和鲁棒性。几个统计
方法(即COX比例危害分析,接收器操作特征曲线,混乱矩阵)将
通过融合CT和病理图像特征来评估性能改善。我们也会
验证新模型在现有标记的上下文中提供的附加预后价值。为了
为了完成拟议的目标和研究任务,组装了一个跨学科团队,其中包括
俄克拉荷马大学医学成像,妇科肿瘤学,放射学和病理学专家。如果
成功,该项目可以产生基本的初步数据和科学证据来支持研究
项目负责人(RPL)申请更全面的研究项目(即NIH R01),以进一步优化和
验证首先,强大,易于使用的决策支持工具,该工具可以帮助临床医生(即
放射科医生和肿瘤学家)确定不同患者的最佳癌症治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Yuchen Qiu的其他基金
Early Evaluation of Ovarian Cancer Prognosis by Fusing Radiographic and Histopathologic Imaging Information
通过融合放射学和组织病理学成像信息对卵巢癌预后进行早期评估
- 批准号:1057329310573293
- 财政年份:2022
- 资助金额:$ 24.49万$ 24.49万
- 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:1057555010575550
- 财政年份:2023
- 资助金额:$ 24.49万$ 24.49万
- 项目类别:
K-mer indexing for pan-genome reference annotation
用于泛基因组参考注释的 K-mer 索引
- 批准号:1079308210793082
- 财政年份:2023
- 资助金额:$ 24.49万$ 24.49万
- 项目类别:
Early Evaluation of Ovarian Cancer Prognosis by Fusing Radiographic and Histopathologic Imaging Information
通过融合放射学和组织病理学成像信息对卵巢癌预后进行早期评估
- 批准号:1057329310573293
- 财政年份:2022
- 资助金额:$ 24.49万$ 24.49万
- 项目类别:
Development of a low-cost epigenetic screening assay for Pap specimen-based detection of early-stage ovarian cancer in high-risk women
开发一种低成本表观遗传筛查方法,用于基于巴氏标本的高危女性早期卵巢癌检测
- 批准号:1067883310678833
- 财政年份:2021
- 资助金额:$ 24.49万$ 24.49万
- 项目类别:
K-mer indexing for pan-genome reference annotation
用于泛基因组参考注释的 K-mer 索引
- 批准号:1009311610093116
- 财政年份:2020
- 资助金额:$ 24.49万$ 24.49万
- 项目类别: