High accuracy optical growth assay of 3D cellular systems
3D 细胞系统的高精度光学生长测定
基本信息
- 批准号:10330571
- 负责人:
- 金额:$ 45.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptedAlgorithmsAnatomyBasic ScienceBiological AssayBiomedical EngineeringCell TherapyCellsCellular biologyClinicClinicalClinical ResearchCollaborationsCoulter counterDiseaseDrug TargetingEscherichia coliExtracellular Matrix ProteinsFluorescenceFluorescence MicroscopyGrowthImageIndividualInterference MicroscopyKineticsLabelLaboratoriesLettersLightMammalian CellMeasurementMeasuresMethodologyMethodsMicroscopeMicroscopyMultimodal ImagingNeoplasm MetastasisNuclearOpticsOrganOrganoidsOsmotic PressurePerformancePhasePopulationProcessQuantitative MicroscopyRegulationResearchResearch PersonnelSpecimenSubcellular structureSystemTechniquesTechnologyThickTimeTissue ModelTranslatingVariantVisionWorkbasebiomedical scientistcell growthdrug developmenthuman diseasehuman modelimaging modalityin vivoinstrumentinterestmathematical analysismultidisciplinarynovelscreeningtargeted treatmenttool
项目摘要
Project Summary
Growth regulation of mammalian cells has been described as "One of the last big unsolved problems in cell
biology". The ability to measure accurately the growth rate of single cells has been the main obstacle in
answering this question. From a clinical perspective, the basic understating of cell growth kinetics and how it is
modulated by disease and treatment will allow for more targeted drug development.
In recent years, there has been a significant interest in multidisciplinary work by biomedical engineers and
scientists with a vision of developing 3D ex vivo tissue models of human organ function, anatomy, and disease.
These 3D cellular systems are referred interchangeably as organoid, organotypic, or spheroid (spherical
organoid). Organoids self-assemble under proper conditions, i.e., when relevant components, such as
extracellular matrix (ECM) proteins, are present. Organoids are well documented to better recapitulate aspects
of in vivo organ function and human disease. The common tool for analysis of such systems has been confocal
(fluorescence) microscopy of fixed specimens. However, this approach does not reveal structural information in
the center of the construct and, most importantly, is limited in terms of time-lapse imaging. There is a critical
need for revealing subcellular structures in label-free mode with high contrast, which allows for dynamic, non-
destructive imaging. At the same time, quantifying the dry mass of the organoid and its cellular components will
inform on the basic organ function and disease, with and without treatment.
Despite this critical need, a unified, easy-to-use methodology to measure the growth rate of individual cells and
3D constructs is lacking. Until recently, the state-of-the-art method to assess a single cell growth curve was
using Coulter counters to measure the volume of a large number of cells, in combination with careful
mathematical analysis. For relatively simple cells such as Escherichia coli (E. coli), traditional microscopy
techniques have also been used to assess growth in great detail. In this type of method the assumption is that
volume is a good surrogate for mass; however, this assumption is not always valid, for example due to
variations in osmotic pressure.
We propose to develop a practical dry mass assay for 2D cell populations, as well as 3D organoids,
based on a novel imaging method developed in our laboratory: Spatial Light Interference Microscopy
(SLIM) for 2D cultures and Gradient Light Interference Microscopy (GLIM) for 3D organoids. SLIM/GLIM
takes advantage of the fact that optical phase delay accumulated through a live cell is linearly
proportional to the dry mass (non-aqueous content) of the cell. Due to its particular interferometric
principle, GLIM significantly suppresses multiple scattering and, as result, is capable of imaging thick
specimens such as organoid/spheroids. The project aims to optimize and translate the composite
SLIM/GLIM technology into a cell growth assay instrument that can be broadly adopted by researchers
in both the research and pharma markets.
项目概要
哺乳动物细胞的生长调节被描述为“细胞中最后一个未解决的大问题之一”
生物学”。准确测量单细胞生长速率的能力一直是该领域的主要障碍
回答这个问题。从临床角度,对细胞生长动力学及其原理的基本理解
受疾病和治疗的调节将允许更有针对性的药物开发。
近年来,生物医学工程师和科学家对多学科工作产生了浓厚的兴趣。
科学家们的愿景是开发人体器官功能、解剖学和疾病的 3D 离体组织模型。
这些 3D 细胞系统可互换地称为类器官、器官型或球体(球形
类器官)。类器官在适当的条件下自组装,即当相关组件,例如
存在细胞外基质(ECM)蛋白。类器官有详细记录,可以更好地概括各个方面
体内器官功能和人类疾病。分析此类系统的常用工具是共焦
固定样本的(荧光)显微镜检查。然而,这种方法并没有揭示结构信息
结构的中心,最重要的是,在延时成像方面受到限制。有一个关键的
需要以高对比度的无标记模式揭示亚细胞结构,这允许动态、非
破坏性成像。同时,量化类器官的干质量及其细胞成分将
告知基本器官功能和疾病,无论是否接受治疗。
尽管存在这一迫切需求,但仍需要一种统一、易于使用的方法来测量单个细胞的生长速度和
缺乏 3D 构造。直到最近,评估单细胞生长曲线的最先进方法是
使用库尔特计数器测量大量细胞的体积,并结合仔细的
数学分析。对于大肠杆菌(E. coli)等相对简单的细胞,传统的显微镜检查
技术也被用来详细评估生长情况。在这种类型的方法中,假设是
体积可以很好地替代质量;然而,这个假设并不总是有效,例如由于
渗透压的变化。
我们建议开发一种适用于 2D 细胞群以及 3D 类器官的实用干质量测定法,
基于我们实验室开发的一种新颖的成像方法:空间光干涉显微镜
(SLIM) 用于 2D 培养,梯度光干涉显微镜 (GLIM) 用于 3D 类器官。纤薄/闪亮
利用通过活细胞累积的光学相位延迟是线性的这一事实
与细胞的干质量(非水含量)成正比。由于其特殊的干涉测量
原理上,GLIM 显着抑制多重散射,因此能够对厚层成像
样本,例如类器官/球体。该项目旨在优化和转化复合材料
将SLIM/GLIM技术打造为可被研究人员广泛采用的细胞生长检测仪器
在研究和制药市场。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Network science characteristics of brain-derived neuronal cultures deciphered from quantitative phase imaging data
- DOI:10.1038/s41598-020-72013-7
- 发表时间:2020-09
- 期刊:
- 影响因子:4.6
- 作者:Chenzhong Yin;Xiongye Xiao;Valeriu Balaban;M. Kandel;Y. J. Lee;G. Popescu;P. Bogdan
- 通讯作者:Chenzhong Yin;Xiongye Xiao;Valeriu Balaban;M. Kandel;Y. J. Lee;G. Popescu;P. Bogdan
Cell-to-cell influence on growth in large populations
- DOI:10.1364/boe.10.004664
- 发表时间:2019-09-01
- 期刊:
- 影响因子:3.4
- 作者:Kandel, Mikhail E.;Lu, Wenlong;Popescu, Gabriel
- 通讯作者:Popescu, Gabriel
Large-scale phase retrieval.
- DOI:10.1038/s41377-021-00616-4
- 发表时间:2021-09-03
- 期刊:
- 影响因子:0
- 作者:Popescu G
- 通讯作者:Popescu G
Engineering geometrical 3-dimensional untethered in vitro neural tissue mimic
工程几何三维无束缚体外神经组织模拟
- DOI:10.1073/pnas.1916138116
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Pagan-Diaz, Gelson J.;Ramos-Cruz, Karla P.;Sam, Richard;Kandel, Mikhail E.;Aydin, Onur;Saif, M. Taher;Popescu, Gabriel;Bashir, Rashid
- 通讯作者:Bashir, Rashid
Epi-illumination gradient light interference microscopy for imaging opaque structures
- DOI:10.1038/s41467-019-12634-3
- 发表时间:2019-10-16
- 期刊:
- 影响因子:16.6
- 作者:Kandel, Mikhail E.;Hu, Chenfei;Popescu, Gabriel
- 通讯作者:Popescu, Gabriel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rashid Bashir其他文献
Rashid Bashir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rashid Bashir', 18)}}的其他基金
Point-of-Care Microfluidic Biochip for Biomarkers Monitoring for Contributing in Early Sepsis Diagnosis
用于生物标志物监测的护理点微流控生物芯片有助于早期脓毒症诊断
- 批准号:
10673974 - 财政年份:2021
- 资助金额:
$ 45.82万 - 项目类别:
Point-of-Care Microfluidic Biochip for Biomarkers Monitoring for Contributing in Early Sepsis Diagnosis
用于生物标志物监测的护理点微流控生物芯片有助于早期脓毒症诊断
- 批准号:
10462484 - 财政年份:2021
- 资助金额:
$ 45.82万 - 项目类别:
Smartphone-linked system for diagnosis and epidemiological reporting of pathogens at the point of care
智能手机连接系统,用于在护理点诊断和流行病学报告病原体
- 批准号:
10462690 - 财政年份:2019
- 资助金额:
$ 45.82万 - 项目类别:
Atomically-thin diode integrated into a nanopore DNA Sensor
集成到纳米孔 DNA 传感器中的原子薄二极管
- 批准号:
9808985 - 财政年份:2019
- 资助金额:
$ 45.82万 - 项目类别:
Smartphone-linked system for diagnosis and epidemiological reporting of pathogens at the point of care
智能手机连接系统,用于在护理点诊断和流行病学报告病原体
- 批准号:
10241489 - 财政年份:2019
- 资助金额:
$ 45.82万 - 项目类别:
Multiplexed Pathogen Detection from Whole Blood for Rapid Detection of Sepsis
全血多重病原体检测可快速检测脓毒症
- 批准号:
9809870 - 财政年份:2019
- 资助金额:
$ 45.82万 - 项目类别:
LLISA: ???Liposome-Linked Immunosorbant Assay??? for Detection of HIV Viral Load
LLISA:???脂质体连接免疫吸附测定???
- 批准号:
8514874 - 财政年份:2013
- 资助金额:
$ 45.82万 - 项目类别:
"LLISA:'Liposome-Linked Immunosorbant Assay' for Detection of HIV Viral Load at Point-of-Care"
“LLISA:用于护理点 HIV 病毒载量检测的‘脂质体联免疫吸附测定’”
- 批准号:
8721331 - 财政年份:2013
- 资助金额:
$ 45.82万 - 项目类别:
Measurements of BPDE-DNA adducts by solid state nonopore and deep sequencing (PQ
通过固态非孔和深度测序 (PQ
- 批准号:
8534070 - 财政年份:2012
- 资助金额:
$ 45.82万 - 项目类别:
Measurements of BPDE-DNA adducts by solid state nonopore & deep sequencing (PQ3
通过固态非孔测量 BPDE-DNA 加合物
- 批准号:
8384743 - 财政年份:2012
- 资助金额:
$ 45.82万 - 项目类别:
相似国自然基金
基于空间代谢流技术探究人参-远志药对通过纠偏单胺类神经递质代谢紊乱治疗阿尔茨海默病的整合作用模式
- 批准号:82304894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
USP46通过去泛素化修饰RAP80促进同源重组修复的分子机制及其在三阴乳腺癌中的功能研究
- 批准号:82373150
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
IL-32通过FAT4介导调控Hippo/YAP信号通路在椎间盘退变中的作用及机制研究
- 批准号:82302737
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMN通过肠道活泼瘤胃球菌调控猪胆酸-GLP-1通路改善PCOS的机制研究
- 批准号:32300989
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
徐氏抑肝扶脾方通过ATP/P2X2-TRPV1信号通路调控肠胶质细胞自噬减轻肝郁脾虚型IBS-D神经炎症的机制研究
- 批准号:82305135
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 45.82万 - 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 45.82万 - 项目类别:
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
- 批准号:
10659397 - 财政年份:2023
- 资助金额:
$ 45.82万 - 项目类别:
Effect of Osseointegrated Prostheses on the Pathogenesis of Hip Osteoarthritis in Patients with Lower Limb Loss
骨整合假体对下肢丧失患者髋骨关节炎发病机制的影响
- 批准号:
10662142 - 财政年份:2023
- 资助金额:
$ 45.82万 - 项目类别:
Measuring input-output operations of cortical neurons with large-scale neurotransmitter imaging
通过大规模神经递质成像测量皮质神经元的输入输出操作
- 批准号:
10687664 - 财政年份:2023
- 资助金额:
$ 45.82万 - 项目类别: