Low-Profile 3D-Printed Radiopaque Bioresorbable Vascular Scaffolds
薄型 3D 打印不透射线生物可吸收血管支架
基本信息
- 批准号:10329908
- 负责人:
- 金额:$ 67.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAntioxidantsArteriesAtherosclerosisBiocompatible MaterialsBiologyBlood VesselsBlood flowCaliberCardiacCardiologyCardiovascular systemCitratesClinical ResearchCoagulation ProcessCoronary ArteriosclerosisCoronary arteryDevicesDiabetes MellitusDimensionsDrug Delivery SystemsEndotheliumEpidemicEventFDA approvedFamily suidaeFormulationHealth Care CostsHumanImageIn VitroIncidenceInflammationInkLiquid substanceMechanicsMetabolic syndromeMetalsModelingMorbidity - disease rateOperative Surgical ProceduresOryctolagus cuniculusOutcomePatientsPeripheral arterial diseasePersonsPharmaceutical PreparationsPolymersProceduresProductionPropertyResearchResearch ProposalsResidual stateRiskSDZ RADSafetyScienceStentsTechniquesTechnologyThe SunThickThrombosisTimeTissuesTreatment outcomeWithdrawalbasebiodegradable polymerbiomaterial compatibilitycostdesigndiabeticdrug standardhemocompatibilityiliac arteryimproved outcomein vivomechanical propertiesmortalitymultidisciplinaryporcine modelpreventrestenosisscaffoldthrombogenesisvasomotion
项目摘要
PROJECT SUMMARY
Atherosclerotic coronary artery disease (CAD) and peripheral artery disease (PAD) are responsible for
significant morbidity, mortality, and high healthcare costs in the USA. This problem will continue to grow due to
the diabetes epidemic as people with diabetes are at increased risk of developing atherosclerosis and less
likely to have favorable treatment outcomes. Endovascular therapies such as placement of a metal stent that
has been dilated by a balloon will open the blockage and restore blood flow. However, these therapies are
plagued by relatively high restenosis rates, which have been attributed to the permanent presence of the stent.
Polymeric bioresorbable vascular scaffolds (BVSs) have emerged as a potential solution to these problems by
providing initial support to prevent recoil and slowly degrading to restore vasomotion and eliminate residual
foreign materials that may contribute to restenosis. However, polymeric BVSs are difficult to fabricate (making
them costly with limited design control) and are made from polymers such as poly(L-lactide) that are
thrombogenic and cause oxidative tissue damage resulting in exacerbated inflammation. In addition, as in the
case of the FDA-approved BVS Absorb GT1 from Abbott Vascular, the strut thickness has to be greater than
150 μm for the scaffold to have sufficient strength to prevent vessel recoil and to accommodate a polymer
coating that contains an anti-restenotic drug to prevent stent re-occlusion. Clinical studies suggest that this
strut thickness, which is 2 times larger than that of bare metal stents, leads to a high incidence of thrombosis in
small-diameter arteries (<2.5 mm) and major adverse cardiac events, limiting the wide spread use of these
devices due to their large profile. The Ameer and Sun research teams have been developing a liquid citrate-
based biomaterial (CBB) that is compatible with a 3D printing technique referred to as micro continuous liquid
interface production (μCLIP). CBBs, which are degradable, have been shown to be thromboresistant and
antioxidant. These properties are desirable for vascular stents. The objective of this research proposal is to
develop a low-profile, drug-eluting, biocompatible and mechanically functional citrate-based BVS. We
hypothesize that a low-profile citrate-based BVS fabricated via μCLIP will perform better than the large-profile
Absorb GT1 BVS in vivo. The specific aims are to: 1) Characterize, in vitro and in vivo in a rabbit model, low-
profile drug-eluting BVSs fabricated using μCLIP, and 2) Assess the safety and efficacy of 3D-printed, drug-
eluting BVSs in atherosclerotic swine with metabolic syndrome. Specifically, we will investigate the patency,
biocompatibility, and resorption of the BVS in coronary arteries of the Ossabaw miniature pig, which
recapitulates human coronary atherosclerosis and metabolic syndrome.
项目概要
动脉粥样硬化性冠状动脉疾病 (CAD) 和外周动脉疾病 (PAD) 是导致
由于美国的高发病率、死亡率和高昂的医疗费用,这一问题将继续加剧。
糖尿病流行,因为糖尿病患者患动脉粥样硬化的风险增加,且患病率降低
可能会产生良好的治疗效果,例如放置金属支架。
通过球囊扩张可以打开堵塞并恢复血流。
受到相对较高的再狭窄率的困扰,这归因于支架的永久存在。
聚合物生物可吸收血管支架(BVS)已成为解决这些问题的潜在解决方案
提供初始支撑以防止反冲并缓慢降解以恢复血管舒缩并消除残留
可能导致再狭窄的异物然而,聚合物 BVS 很难制造(使得
它们价格昂贵且设计控制有限)并且由聚(L-丙交酯)等聚合物制成,
血栓形成并导致氧化组织损伤,导致炎症恶化。
对于经 FDA 批准的 Abbott Vascular 的 BVS Absorb GT1,支柱厚度必须大于
150 μm 使支架具有足够的强度以防止血管反冲并容纳聚合物
含有抗再狭窄药物的涂层可防止支架重新闭塞。
支架厚度比裸金属支架大2倍,导致血栓发生率高
小直径动脉(<2.5 毫米)和主要不良心脏事件,限制了这些的广泛使用
由于其外形大,Ameer 和 Sun 研究团队一直在开发一种液体柠檬酸盐-
基于生物材料 (CBB),与称为微连续液体的 3D 打印技术兼容
界面生产(μCLIP)是可降解的,已被证明具有抗血栓性和抗血栓性。
这些特性对于血管支架来说是理想的。
开发一种低调、药物洗脱、生物相容且具有机械功能的基于柠檬酸盐的 BVS。
研究发现通过 μCLIP 制造的低轮廓柠檬酸盐 BVS 的性能优于大轮廓
体内吸收 GT1 BVS 的具体目标是:1) 在兔子模型中进行体外和体内表征,低-
分析使用 μCLIP 制造的药物洗脱 BVS,以及 2) 评估 3D 打印的药物洗脱 BVS 的安全性和有效性
具体而言,我们将研究在患有代谢综合征的动脉粥样硬化猪中洗脱 BVS 的通畅性。
Ossabaw 小型猪冠状动脉中 BVS 的生物相容性和吸收,
概括了人类冠状动脉粥样硬化和代谢综合征。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conformal Geometry and Multimaterial Additive Manufacturing through Freeform Transformation of Building Layers.
- DOI:10.1002/adma.202005672
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Huang J;Ware HOT;Hai R;Shao G;Sun C
- 通讯作者:Sun C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillermo Antonio Ameer其他文献
Guillermo Antonio Ameer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillermo Antonio Ameer', 18)}}的其他基金
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10641321 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Telemetric Regenerative Bandage for Accelerating Wound Healing
用于加速伤口愈合的遥测再生绷带
- 批准号:
10663343 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10206938 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10424463 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10689787 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Telemetric Regenerative Bandage for Accelerating Wound Healing
用于加速伤口愈合的遥测再生绷带
- 批准号:
10346507 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Low-Profile 3D-Printed Radiopaque Bioresorbable Vascular Scaffolds
薄型 3D 打印不透射线生物可吸收血管支架
- 批准号:
10093122 - 财政年份:2019
- 资助金额:
$ 67.7万 - 项目类别:
Developing a SMART scaffold for bladder augmentation
开发用于膀胱扩张的 SMART 支架
- 批准号:
10429930 - 财政年份:2019
- 资助金额:
$ 67.7万 - 项目类别:
Transarterial Immunomodulatory Embolization: A novel approach to cancer therapy
经动脉免疫调节栓塞:癌症治疗的新方法
- 批准号:
9555090 - 财政年份:2016
- 资助金额:
$ 67.7万 - 项目类别:
Preclinical Investigation of a Bioengineered Vascular Graft
生物工程血管移植物的临床前研究
- 批准号:
8897878 - 财政年份:2013
- 资助金额:
$ 67.7万 - 项目类别:
相似国自然基金
农用地膜抗氧化剂的土壤污染特征及其微生物效应与机制研究
- 批准号:42377223
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
塑料抗氧化剂内分泌干扰转化产物的识别与环境行为研究
- 批准号:22306042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
取代对苯二胺抗氧化剂及其醌衍生物的人体内暴露标志物研究
- 批准号:22306031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗氧化剂/活性离子时序释放复合支架构建及其修复糖尿病骨缺损的机制研究
- 批准号:32360232
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
长江口盐度梯度下光诱导氯自由基驱动纳塑料老化及其抗氧化剂的抑制作用
- 批准号:42377372
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Bioengineered Composite for the Treatment of Peripheral Arterial Disease
用于治疗外周动脉疾病的生物工程复合材料
- 批准号:
10639077 - 财政年份:2023
- 资助金额:
$ 67.7万 - 项目类别:
Ferroptosis in knock-in sepiapterin reductase mutation rabbits
敲入墨蝶呤还原酶突变兔的铁死亡
- 批准号:
10747716 - 财政年份:2023
- 资助金额:
$ 67.7万 - 项目类别:
Therapeutic Strategies for Microvascular Dysfunction in Type 1 Diabetes
1 型糖尿病微血管功能障碍的治疗策略
- 批准号:
10590208 - 财政年份:2023
- 资助金额:
$ 67.7万 - 项目类别:
Improving exercise rehabilitation efficacy and outcomes in Veterans with peripheral artery disease: Targeting oxidative stress and inflammation
提高患有外周动脉疾病的退伍军人的运动康复效果和结果:针对氧化应激和炎症
- 批准号:
10638943 - 财政年份:2023
- 资助金额:
$ 67.7万 - 项目类别:
Endothelial Cell Respiration in Atherosclerotic Plaque Erosion
动脉粥样硬化斑块糜烂中的内皮细胞呼吸
- 批准号:
10586227 - 财政年份:2023
- 资助金额:
$ 67.7万 - 项目类别: