Deep-learning based profiling of patient-derived cells as a tool for genomic and translational medicine
基于深度学习的患者来源细胞分析作为基因组和转化医学的工具
基本信息
- 批准号:10321280
- 负责人:
- 金额:$ 9.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-22 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAwardBenignBiologicalCellsCellular MorphologyCellular biologyClinicalComplementComplexComputersCustomDataData ScienceData SourcesDevelopmentDevelopment PlansDiagnosticDiseaseEnvironmentFaceFibroblastsFosteringGene Expression ProfilingGenesGeneticGenetic DiseasesGenetic VariationGenomeGenomic medicineGenomicsGoalsHandHeritabilityImageInstitutesInterventionLeadLeadershipMachine LearningMalignant NeoplasmsMapsMeasuresMedical GeneticsMethodsMitochondrial DiseasesMolecularMorphologyNatureNerve DegenerationOutcomePathogenicityPatient imagingPatientsPharmacologyPhenocopyPhenotypePrivatizationProtocols documentationRare DiseasesResearchResearch PersonnelResolutionSample SizeScientistSignal TransductionStandardizationTechniquesTechnologyTestingTherapeutic InterventionTimeTrainingUniversitiesValidationVariantbasecareercellular imagingcohortcost efficientdeep learningdeep learning algorithmdesignefficacy testingexperimental studygene therapygenetic associationgenome wide association studygenome-widegenomic toolshereditary neuropathyindividual patientlearning strategymicroscopic imagingmultidisciplinarypatient subsetspatient variabilitypersonalized genomic medicineprogramssingle-cell RNA sequencingskillssmall molecule librariesstatisticssuccesstooltranscriptome sequencingtranslational medicine
项目摘要
Project Summary/Abstract:
The genetic landscape of rare and common diseases has emerged as heterogeneous and complex. Already,
researchers and clinicians face the challenge to discern pathophysiological mechanism and treatment
opportunities for hundreds of genetic subtypes that have been identified in rare diseases, such as inherited
neuropathies (INs) or mitochondrial diseases (MiDs) alone. Still, a large fraction of disease loci remains to be
discovered – a daunting task, since gene-identification studies often require immense sample-sizes, which are
difficult to achieve, even for more common conditions. Simultaneously, much of the heritability of many
disorders appears to be determined by the collective impact of possibly thousands of low-impact variants,
spread across the genome. Ideally, the impact of a given set of candidate variants could be assessed within
high-throughput framework that accounts for the genetic context of individual patients. Leveraging advanced
deep learning algorithms, we have developed an unbiased, scalable method to rapidly identify disease-
associated phenotypes in high-resolution, multiplexed, fluorescent microscopy images of primary, patient
derived cells. In turn, the discovered phenotypes can be exploited as experimental signals against which the
disease relevance of candidate variants can be confirmed, by virtue of genetic complementation experiments.
At the same time, the standardized and scalable nature of our method renders it suitable to test potential
therapeutic interventions, e.g. to test the efficacy of potential gene-therapy, or to screen small molecule
libraries, while maintaining patient-specific granularity. The goal of this proposal is to apply our approach to an
expanded cohort of patient cells and to refine methods to interpret both genetic and pharmacological
perturbations. In this, I will be supported by an exceptional and multidisciplinary team of experts in clinical,
molecular and functional genetics, and computer scientists, within the world-class scientific environment
offered by Columbia University and the Broad Institute. In a carefully designed development plan, I will finalize
my training in machine learning and data science, expand my expertise to single-cell RNA-sequencing and
other single-cell methods, and acquire essential leadership and scholarly skills required for an independent
research career. Over the course of this award, I will apply our cellular profiling approach to generate a
standardized map of deep, quantitative descriptions of disease-associated cellular phenotypes across a
number of INs, MiDs and neurodegenerative conditions. We will explore the integration of RNA-sequencing to
enhance our approach. Finally, we will apply our method to the discovery and confirmation of new disease
genes, and screen a limited number of pharmacological interventions through our method. Together, the
proposed developmental plan and research strategy will foster my ability to lead an independent research
program, to establish cellular profiling as a powerful platform to advance genomic and translational medicine.
项目摘要/摘要:
罕见和常见疾病的遗传景观已经呈现出异质性和复杂性。
研究人员和同类面临着辨别病理生理机制和治疗的挑战
已在罕见疾病(例如遗传性疾病)中发现的数百种遗传亚型的机会
神经病(IN)或线粒体疾病(MiD)仍然是很大一部分疾病位点。
发现——这是一项艰巨的任务,因为基因鉴定研究通常需要巨大的样本量,
即使在更常见的条件下,也很难同时实现许多遗传性。
疾病似乎是由可能数千种低影响变异的集体影响决定的,
理想情况下,可以在整个基因组中评估一组给定候选变体的影响。
解释个体患者遗传背景的高通量框架。
深度学习算法,我们开发了一种公正的、可扩展的方法来快速识别疾病-
原发性、患者的高分辨率、多重荧光显微镜图像中的相关表型
反过来,所发现的表型可以用作实验信号。
候选变体的疾病相关性可以通过遗传互补实验来确认。
同时,我们方法的标准化和可扩展性使其适合测试潜力
治疗干预,例如测试潜在基因疗法的功效,或筛选小分子
库,同时保持患者特定的粒度该提案的目标是将我们的方法应用于
扩大患者细胞群并完善解释遗传和药理学的方法
在这方面,我将得到临床、多学科专家团队的支持。
分子和功能遗传学以及计算机科学家在世界一流的科学环境中
由哥伦比亚大学和布罗德研究所提供,在精心设计的开发计划中,我将最终确定。
我在机器学习和数据科学方面的培训,将我的专业知识扩展到单细胞 RNA 测序和
其他单细胞方法,并获得独立所需的基本领导力和学术技能
在这个奖项的研究生涯中,我将应用我们的细胞分析方法来生成一个
对整个疾病相关细胞表型进行深入、定量描述的标准化图谱
我们将探索 RNA 测序与神经退行性疾病的整合。
最后,我们将应用我们的方法来发现和确认新疾病。
基因,并通过我们的方法筛选有限数量的药理干预措施。
提出的发展计划和研究策略将培养我领导独立研究的能力
计划,将细胞分析建立为推进基因组和转化医学的强大平台。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Maximilian Anton Pernice其他文献
Wolfgang Maximilian Anton Pernice的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Maximilian Anton Pernice', 18)}}的其他基金
Integrated morphological and transcriptomic single-cell profiling of patient-derived cells as a platform for genomic and translational medicine
患者来源细胞的综合形态学和转录组单细胞分析作为基因组和转化医学的平台
- 批准号:
10802704 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Competitive Bidding in Medicare and the Implications for Home Oxygen Therapy in COPD
医疗保险竞争性招标以及对慢性阻塞性肺病家庭氧疗的影响
- 批准号:
10641360 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Preventing Firearm Suicide Deaths Among Black/African American Adults
防止黑人/非裔美国成年人因枪支自杀死亡
- 批准号:
10811498 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别:
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
- 批准号:
10594266 - 财政年份:2023
- 资助金额:
$ 9.79万 - 项目类别: