Next generation deep tissue quantitative optical imaging

下一代深层组织定量光学成像

基本信息

  • 批准号:
    10320455
  • 负责人:
  • 金额:
    $ 48.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Nearly 20 years of clinical research has shown that near-infrared optical imaging based upon frequency domain diffuse optical spectroscopy (FD-DOS) can be a powerful tool for the study, diagnosis, and personalized treatment of human disease. When used for neuroimaging (i.e. functional near-infrared spectroscopy, fNIRS), FD-DOS can provide a greater imaging depth compared to standard continuous-wave (CW) fNIRS thus reaching deeper cortical layers and providing better distinction from superficial layers. In breast cancer, FD-DOS is effective for predicting individual response to neoadjuvant chemotherapy and similar strong evidence supporting FD-DOS has been collected in critical care, exercise physiology, breast cancer diagnosis, and other applications. Despite this convincing clinical data, FD-DOS has not yet been translated to standard clinical use for any indication. The reasons are two-fold. First, diffuse optical imaging methods, as a whole, still suffer from low spatial resolution and signal-to-noise ratio. Furthermore, clinical applications that can benefit from the advanced quantitation and deeper sensitivity afforded by FD-DOS are reluctant to adopt the method because it lacks scalability for high density, high resolution imaging and is prohibitively complex, slow, and difficult to use. This project will remove these barriers by creating a reflectance-based FD-DOS imaging platform for quantitative deep tissue spectroscopy and tomography with unprecedented scalability, precision, and speed that enables dramatic improvements in accuracy and spatial resolution. This will be enabled by the development and evaluation of massively-scalable multi-frequency FD hardware and software that samples tissue at ultrahigh spatial densities with high precision. Current methods are insufficient because data acquisition is too slow, the hardware needed (e.g. optical devices/fibers and electronics) is too bulky and heavy, and standard data processing and 3D reconstruction algorithms cannot reasonably handle these large datasets. This project introduces innovations in multi-wavelength optical sources and sensitive detectors, multi- frequency FD modulation and demodulation, high spatial density tissue sampling methods, FD phased-array structured interrogation of tissue, and 2D/3D image reconstruction. Improved performance will be demonstrated through human validation studies of breast imaging and quantitative fNIRS. The results will also significantly advance wearable sensing capabilities and improve quantification in other optical modalities such as photoacoustic imaging. No other medical imaging technology can provide quantitative, deep tissue, and real-time measurements of both endogenous and exogenous molecules and tissue scattering parameters in a compact, scalable platform. Together, these advances will usher in a next generation of quantitative tissue optical spectroscopy that lead to improved diagnostics and individualized care, especially in neurology, breast oncology, and personal health. 1
项目摘要 将近20年的临床研究表明,基于频率的近红外光学成像 域分散光谱(FD-DOS)可以成为研究,诊断和 个性化治疗人类疾病。当用于神经成像时(即功能性近红外 与标准连续波相比 (CW)FNIRS因此达到了更深的皮质层,并提供了更好地与表层层的区别。在 乳腺癌,FD-DOS可有效预测个人对新辅助化疗的反应和类似的反应 在重症监护,运动生理,乳腺癌中收集了支持FD-DO的有力证据 诊断和其他应用。尽管有令人信服的临床数据,但FD-DOS尚未转换为 标准临床用途。原因是两个方面。首先,弥散光学成像方法,作为一个 整体,仍然患有低空间分辨率和信噪比。此外,临床应用 可以从FD-DOS提供的高级定量和更深入的敏感性中受益不愿采用 该方法是因为它缺乏高密度,高分辨率成像的可伸缩性,并且非常复杂, 缓慢,难以使用。该项目将通过创建基于反射率的FD-DOS来消除这些障碍 具有前所未有的可伸缩性的定量深组织光谱和断层扫描的成像平台, 精度和速度,可以在精度和空间分辨率方面进行巨大改进。这将是 通过开发和评估大规模的多频FD硬件和软件的开发和评估 这以高精度在超高空间密度下采样。当前的方法不足,因为 数据采集​​太慢,需要的硬件(例如,光学设备/光纤和电子设备)太大了,并且 重型和标准数据处理以及3D重建算法无法合理处理这些大型 数据集。该项目介绍了多波长光源和敏感探测器的创新 频率FD调制和解调,高空间密度组织采样方法,FD分阶段阵列 组织的结构化询问和2D/3D图像重建。性能的提高将是 通过人类对乳房成像和定量FNIRS的验证研究证明。结果也将 显着提高可穿戴感应功能并改善其他光学方式的定量 作为光声成像。没有其他医学成像技术可以提供定量,深层组织和 内源性和外源分子和组织散射参数的实时测量 紧凑,可扩展的平台。这些进步将加入下一代定量组织 光谱法可以改善诊断和个性化护理,尤其是在神经学,乳房方面 肿瘤学和个人健康。 1

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas D OSullivan其他文献

Thomas D OSullivan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas D OSullivan', 18)}}的其他基金

Next generation deep tissue quantitative optical imaging
下一代深层组织定量光学成像
  • 批准号:
    10538634
  • 财政年份:
    2021
  • 资助金额:
    $ 48.22万
  • 项目类别:

相似国自然基金

采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
  • 批准号:
    51779168
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
采用数值计算求解一类半代数系统全部整数解
  • 批准号:
    11671377
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
采用pinball loss的MEE算法研究
  • 批准号:
    11401247
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
  • 批准号:
    41301419
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
采用ε近似算法的盲信道均衡
  • 批准号:
    60172058
  • 批准年份:
    2001
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 48.22万
  • 项目类别:
Effect of Osseointegrated Prostheses on the Pathogenesis of Hip Osteoarthritis in Patients with Lower Limb Loss
骨整合假体对下肢丧失患者髋骨关节炎发病机制的影响
  • 批准号:
    10662142
  • 财政年份:
    2023
  • 资助金额:
    $ 48.22万
  • 项目类别:
Measuring input-output operations of cortical neurons with large-scale neurotransmitter imaging
通过大规模神经递质成像测量皮质神经元的输入输出操作
  • 批准号:
    10687664
  • 财政年份:
    2023
  • 资助金额:
    $ 48.22万
  • 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
  • 批准号:
    10659842
  • 财政年份:
    2023
  • 资助金额:
    $ 48.22万
  • 项目类别:
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
  • 批准号:
    10659397
  • 财政年份:
    2023
  • 资助金额:
    $ 48.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了