Improved cancer screening with synthetic and stationary 3D mammography
通过合成和固定 3D 乳房 X 光检查改进癌症筛查
基本信息
- 批准号:10318140
- 负责人:
- 金额:$ 3.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsBackBasic ScienceBiomedical EngineeringBreastBreast Cancer DetectionBreast MicrocalcificationCancer DetectionCarbon NanotubesClinicalComplementComputer softwareComputersDataDevelopmentDevicesDiagnosticDigital Breast TomosynthesisDoctor of PhilosophyEarly DiagnosisEvolutionFoundationsFutureGoalsHumanImageImaging DeviceImaging technologyKnowledgeLaboratoriesLibrariesMammographic screeningMammographyMathematicsMedicineMethodsMotivationNanotechnologyPatientsPerformancePhysiciansPositioning AttributePreclinical TestingProcessProtocols documentationRadiation Dose UnitRadiology SpecialtyReaderResearchResolutionScientistScreening for cancerSupervisionSystemTechnologyTestingThree-Dimensional ImageThree-Dimensional ImagingTimeTrainingUniversitiesWorkX-Ray Medical Imagingbasebreast imagingcareerclinical applicationclinically relevantdiagnostic accuracyflexibilitygraduate studenthead-to-head comparisonhigh resolution imaginghuman imagingimage archival systemimage processingimaging systemimprovedindexingmalignant breast neoplasmmedical schoolsnew technologypreferencequantitative imagingradiologistscreeningskillstomosynthesistool
项目摘要
PROJECT SUMMARY/ABSTRACT
Motivation and clinical relevance: Early detection is the key to surviving breast cancer. This project aims to
complete the development of an experimental carbon nanotube-enabled x-ray imaging device for breast cancer
screening. Best described as stationary digital breast tomosynthesis (sDBT), this unique approach to 3D breast
imaging has been shown in pre-clinical testing to collect higher quality information than the commercially-
available 3D mammography systems currently in use. As such, it has the potential to improve the early detection
of cancer. However, as with all 3D imaging, the images presented to the reader are the product of extensive
computer processing. For 3D breast imaging, the final and crucial step is the presentation of a synthetic
mammogram. Purpose and hypotheses: The purpose of this project is to integrate synthetic mammography
into the image processing capability of the sDBT system, thereby providing a complete clinical tool. We
hypothesize that (1) the quality of the sDBT synthetic mammogram will be greater than the quality of synthetic
mammograms from available 3D mammography systems and (2) readers will prefer the sDBT synthetic
mammogram over standard mammograms when interpreting diagnostically-important image features. Methods:
To test these hypotheses, the research will involve two specific aims. First, phantom-based experimentation will
be used to develop image processing algorithms that optimize the quality of information generated by sDBT and
displayed as a synthetic mammogram. Quantitative image quality metrics (detectability indices) will be used for
optimization, with images from commercially-available 2D and 3D mammography devices providing references
for comparison. Second, the clinical utility of the optimized synthetic mammogram will be tested in reader studies,
when applied to a library of sDBT images that have been collected previously in human trials. These studies will
quantify reader performance (diagnostic accuracy) and preference, when interpreting clinically-important image
features, such as masses and microcalcifications, in a head-to-head comparison of sDBT synthetic
mammograms to standard mammograms. Project value: Since trials assessing the value of 3D mammography
should include a synthetic mammogram, this project will have a direct clinical impact. It will provide the foundation
for continued human testing of this promising high-resolution imaging system, which has the potential to improve
breast cancer detection. Training Plan: It is anticipated that this project will require two years, forming the core
of the dissertation work to complete a PhD in Biomedical Engineering. It will be carried out in a basic research
lab with scientists and computer programmers and will also involve working with patient data, under the
supervision of physician-scientists and radiologists. Since this project combines basic experimentation with a
direct clinical application, it should provide an ideal transition back to medical school as well as excellent training
for this MD-PhD graduate student, who is preparing for a career in academic medicine with a research focus on
advanced imaging technologies and 3D image processing.
项目摘要/摘要
动机和临床相关性:早期检测是存活的乳腺癌的关键。这个项目旨在
完成针对乳腺癌的实验性碳纳米管X射线成像的开发
筛选。最佳描述为固定的数字乳房合成(SDBT),这是3D乳房的独特方法
在临床前测试中已显示成像,以收集比商业上的更高质量信息
目前正在使用的可用3D乳房X线摄影系统。因此,它有可能改善早期检测
癌症。但是,与所有3D成像一样,呈现给读者的图像是广泛的产物
计算机处理。对于3D乳房成像,最终和关键步骤是呈现合成的
乳房X线照片。目的和假设:该项目的目的是整合合成乳房X线摄影
进入SDBT系统的图像处理能力,从而提供完整的临床工具。我们
假设(1)SDBT合成乳房X线照片的质量将大于合成的质量
可用的3D乳房X线摄影系统和(2)读者的乳房X线照片会更喜欢SDBT合成
在解释诊断至关重要的图像特征时,标准乳房X线照片上的乳房X线照片会产生。方法:
为了检验这些假设,研究将涉及两个具体目标。首先,基于幻影的实验将
用于开发图像处理算法,以优化SDBT和
显示为合成乳房X线照片。定量图像质量指标(可检测性指标)将用于
优化,来自商业上可用的2D和3D乳房X线照相设备的图像提供参考
进行比较。其次,优化合成乳房X线照片的临床实用性将在读者研究中进行测试,
当应用于先前在人类试验中收集的SDBT图像库时。这些研究会
量化读者表现(诊断精度)和偏好,解释临床上的图像
在SDBT合成的正面比较中,质量和微钙化等特征
标准乳房X线照片的乳房X线照片。项目价值:由于试验评估3D乳房X线摄影的值
应该包括合成乳房X线照片,该项目将产生直接的临床影响。它将提供基础
为了持续对这种有希望的高分辨率成像系统的人类测试,这有可能改善
乳腺癌检测。培训计划:预计该项目将需要两年,形成核心
论文工作以完成生物医学工程博士学位。它将在基础研究中进行
与科学家和计算机程序员的实验室,还将涉及与患者数据一起工作
医师科学家和放射科医生的监督。由于这个项目将基本实验与
直接临床应用,它应该提供理想的过渡到医学院以及出色的培训
对于这位MD-PHD研究生,他正在为学术医学做准备,研究重点是
高级成像技术和3D图像处理。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visualizing microcalcifications in lumpectomy specimens: an exploration into the clinical potential of carbon nanotube-enabled stationary digital breast tomosynthesis.
可视化肿瘤切除标本中的微钙化:探索碳纳米管固定数字乳腺断层合成的临床潜力。
- DOI:10.1088/2057-1976/ab3320
- 发表时间:2019
- 期刊:
- 影响因子:1.4
- 作者:Puett,Connor;Gao,Jenny;Tucker,Andrew;Inscoe,ChristinaR;Hwang,Michael;Kuzmiak,CherieM;Lu,Jianping;Zhou,Otto;Lee,YuehZ
- 通讯作者:Lee,YuehZ
Applying synthetic radiography to intraoral tomosynthesis: a step towards achieving 3D imaging in the dental clinic.
将合成放射线摄影应用于口腔内断层合成:在牙科诊所实现 3D 成像的一步。
- DOI:10.1259/dmfr.20200159
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Puett,Connor;Inscoe,ChristinaR;Hilton,RobertL;ReganAnderson,MichaelW;Perrone,Lisa;Puett,Savannah;Gaalaas,LaurenceR;Platin,Enrique;Lu,Jianping;Zhou,Otto
- 通讯作者:Zhou,Otto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Connor Puett其他文献
Andrew Connor Puett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 3.27万 - 项目类别:
Visual Analytics for Exploration and Hypothesis Generation Using Highly MultiplexedSpatial Data of Tissues and Tumors
使用组织和肿瘤的高度多重空间数据进行探索和假设生成的可视化分析
- 批准号:
10743329 - 财政年份:2023
- 资助金额:
$ 3.27万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 3.27万 - 项目类别:
Ten-Fold Resolution Boost for Magnetic Particle Imaging with Applications to Rapid, Non-Invasive Imaging of CAR-T Cell Therapies, Stroke, GI Bleeds and Pulmonary Embolisms
磁粒子成像分辨率提高十倍,应用于 CAR-T 细胞疗法、中风、胃肠道出血和肺栓塞的快速、非侵入性成像
- 批准号:
10714021 - 财政年份:2023
- 资助金额:
$ 3.27万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 3.27万 - 项目类别: