Microfluidic platforms to generate 'off-the-shelf' fratricide-resistant CAR T cells for T-cell malignancies
微流体平台可生成用于 T 细胞恶性肿瘤的“现成”抗自相残杀 CAR T 细胞
基本信息
- 批准号:10317102
- 负责人:
- 金额:$ 17.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-10 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AllogenicAnimalsAntigen TargetingAntigensB lymphoid malignancyBiological AssayBiomechanicsCAR T cell therapyCD5 AntigensCRISPR interferenceCRISPR/Cas technologyCell LineCell NucleusCell ProliferationCell SurvivalCell TherapyCell physiologyCellsClinicalClustered Regularly Interspaced Short Palindromic RepeatsConvectionDataDevicesDiseaseElectroporationEngineeringEvaluationFlow CytometryGenerationsGenomic InstabilityGoalsHeadHeterogeneityIL2 geneImmunocompromised HostIn VitroIndividualIndustryKnock-outLentivirus VectorLeukapheresisLeukemic CellLifeLuciferasesMalignant - descriptorMalignant NeoplasmsMethodsMicrofluidic MicrochipsMicrofluidicsMonitorMusPatientsProcessProductionRelapseRelaxationResearchResearch PersonnelResearch Project GrantsResistanceRibonucleoproteinsRouteSurface AntigensSystemT cell therapyT-Cell LeukemiaT-Cell ReceptorT-LymphocyteTRA@ gene clusterTechnologyTestingTherapeuticTimeTransfectionTranslatingTreatment ProtocolsViralViral VectorXenograft procedurebasecancer therapycellular engineeringchimeric antigen receptorchimeric antigen receptor T cellscombinatorialcytokinecytotoxicitydesignexperimental studygenetically modified cellsgenome editinggraft vs host diseasein vitro testingin vivoinnovationinsertion/deletion mutationknock-downmouse modelnovelpre-clinicalpreventreceptor expressionsuccesstooltranscriptome sequencingvector
项目摘要
Project Summary
Chimeric antigen receptor (CAR) T-cell therapy has been remarkably successful in treating B-cell
malignancies; however, fewer studies have evaluated CAR T-cell therapy for the treatment of T-cell
malignancies. Two main manufacturing challenges exist in translating this therapy for T-cell disease. First,
given the lack of a cancer-specific antigen on malignant T cells, CAR T cells targeting T-cell antigens undergo
fratricide, thus making effective expansion of a CAR T-cell product difficult. Second, the difficulty in isolating
healthy T cells during leukapheresis results in product contamination, wherein malignant T cells inadvertently
transduced to express the CAR become treatment-resistant. Thus targeting T-cell disease ideally requires an
allogeneic “off-the-shelf” fratricide-resistant CAR T-cell product. This can be achieved by multiplex genome
editing of T cells prior to transduction with the CAR-expressing vector. Genome editing of the target T-cell
antigen via CRISPR/Cas9 technology would prevent fratricide, while knocking down T-cell receptor (TCR)
expression through T-cell receptor alpha chain (TRAC) locus editing would prevent life-threatening graft-
versus-host disease. However, new delivery technologies are needed to facilitate production of T-cell therapies
requiring multiple genome edits. Inefficient transfection and combinatorial stochasticity can produce a final
product that contain subsets of cells that are unsafe or ineffective, decreasing yield as well as product potency.
The current goal standard is to perform knockout edits using a non-viral delivery system through
electroporation. Electroporation when conducted serially for multiple genome edits results in a substantial
decrease in cell proliferation and low yield. Alternatively, when performed as a batch process, electroporation
can result in the interference of CRISPR edits, or worse, a plethora of double strand breaks that culminate in
genomic instability and low proliferation in vivo. In this collaborative multiple principle investigator (mPI)
proposal, we plan to test a novel microfluidic transfection technology to generate an effective CAR T-cell
product for T-cell malignancies. Our microfluidic platform, called volume exchange for convective transfer
(VECT) mechanoporation, is a non-viral, biomechanical approach that enables efficient delivery of genome
editing products into the cell interior. It has the potential to permit multiple CRISPR edits with high transfection
efficiency and viability, while being gentle enough to avoid detrimental off-target damage to therapeutic cells.
VECT mechanoporation has shown low damage to the nucleus of T cells and therefore, offers a route to
produce more proliferative therapeutic T cells. In Aim 1, we will establish the microfluidic device and process
parameters to optimally deliver CD5 and TRAC CRISPR-Cas9 editing molecules to T cells, in both serial and
multiplexed approaches. In Aim 2, edited T cells will be transduced with CD5-CAR encoding lentiviral vector
and cytotoxicity will be tested in in vitro and in vivo experiments.
项目摘要
嵌合抗原受体(CAR)T细胞疗法在治疗B细胞方面非常成功
恶性;然而,较少的研究评估了T细胞治疗T细胞的CAR T细胞疗法
恶性肿瘤。将这种疗法转化为T细胞疾病的主要制造挑战。第一的,
鉴于缺乏恶性T细胞上的癌症特异性抗原,靶向T细胞抗原的CAR T细胞经历
杂化,从而使CAR T细胞产品的有效扩展变得困难。第二,隔离的困难
白细胞术期间健康的T细胞会导致产物污染,其中恶性T细胞无意间
转导以表达汽车变得耐药。理想情况下,靶向T细胞疾病需要
同种异体“现成的”耐药性汽车T细胞产品。这可以通过多重基因组来实现
在用表达汽车的载体转移之前,T细胞的编辑。目标T细胞的基因组编辑
通过CRISPR/CAS9技术抗原可以防止杂化,同时击倒T细胞受体(TCR)
通过T细胞受体α链(TRAC)的表达表达将防止威胁生命的移植物
与宿主疾病。但是,需要新的交付技术来促进T细胞疗法的生产
需要多个基因组编辑。效率低下的转染和组合随机性可以产生最终
包含不安全或无效的细胞子集,产量降低以及产品效力。
当前的目标标准是使用非病毒输送系统执行淘汰赛编辑
电穿孔。当进行多个基因组编辑串行进行电穿孔导致实质性
细胞增殖和低产量的降低。替代地作为批处理过程进行电穿孔
可能导致CRISPR编辑的干扰,或更糟糕的是,大量的双链断裂了
基因组不稳定性和体内较低的增殖。在此合作多重主要研究者(MPI)中
提案,我们计划测试一种新型的微流体转染技术,以生成有效的汽车T细胞
T细胞恶性肿瘤的产品。我们的微流体平台,称为对流传输的音量交换
(vect)机理围绕是一种非病毒,生物力学方法,可有效地递送基因组
将产品编辑到细胞内部。它有可能允许高转染的多次CRISPR编辑
效率和生存能力,同时足够温和以避免探测器对治疗细胞的损害。
VECT机械配饰显示出对T细胞核的损害较低,因此提供了通往的途径
产生更多增殖的治疗性T细胞。在AIM 1中,我们将建立微流体设备和过程
在串行和
多路复用方法。在AIM 2中,编辑的T细胞将用CD5卡车编码慢病毒载体翻译
细胞毒性将在体外和体内实验中进行测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunil Sudhir Raikar其他文献
Sunil Sudhir Raikar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sunil Sudhir Raikar', 18)}}的其他基金
Gamma delta T-cell immunotherapy for T-cell acute lymphoblastic leukemia
T 细胞急性淋巴细胞白血病的 Gamma Delta T 细胞免疫疗法
- 批准号:
10593051 - 财政年份:2020
- 资助金额:
$ 17.32万 - 项目类别:
Gamma delta T-cell immunotherapy for T-cell acute lymphoblastic leukemia
T 细胞急性淋巴细胞白血病的 Gamma Delta T 细胞免疫疗法
- 批准号:
10368969 - 财政年份:2020
- 资助金额:
$ 17.32万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Allogeneic BAFF Ligand Based CAR T Cells as a Novel Therapy for B Cell Malignancies
基于同种异体 BAFF 配体的 CAR T 细胞作为 B 细胞恶性肿瘤的新疗法
- 批准号:
10698759 - 财政年份:2023
- 资助金额:
$ 17.32万 - 项目类别:
Development of a treatment for durable remission of HIV using transposon engineered CAR-T and NK cells
使用转座子工程 CAR-T 和 NK 细胞开发持久缓解 HIV 的治疗方法
- 批准号:
10599604 - 财政年份:2022
- 资助金额:
$ 17.32万 - 项目类别:
Mechanisms of antibody-mediated lung Injury after blood transfusion
输血后抗体介导的肺损伤机制
- 批准号:
10318593 - 财政年份:2019
- 资助金额:
$ 17.32万 - 项目类别:
Human embryonic stem cell-derived mesenchymal stromal cell therapy for lupus nephritis
人胚胎干细胞来源的间充质基质细胞治疗狼疮性肾炎
- 批准号:
8973041 - 财政年份:2015
- 资助金额:
$ 17.32万 - 项目类别:
Role of the thymic epithelium on the outcome of allogeneic transplantation
胸腺上皮对同种异体移植结果的作用
- 批准号:
8308335 - 财政年份:2011
- 资助金额:
$ 17.32万 - 项目类别: