Microfluidic platforms to generate 'off-the-shelf' fratricide-resistant CAR T cells for T-cell malignancies

微流体平台可生成用于 T 细胞恶性肿瘤的“现成”抗自相残杀 CAR T 细胞

基本信息

  • 批准号:
    10317102
  • 负责人:
  • 金额:
    $ 17.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-10 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Project Summary Chimeric antigen receptor (CAR) T-cell therapy has been remarkably successful in treating B-cell malignancies; however, fewer studies have evaluated CAR T-cell therapy for the treatment of T-cell malignancies. Two main manufacturing challenges exist in translating this therapy for T-cell disease. First, given the lack of a cancer-specific antigen on malignant T cells, CAR T cells targeting T-cell antigens undergo fratricide, thus making effective expansion of a CAR T-cell product difficult. Second, the difficulty in isolating healthy T cells during leukapheresis results in product contamination, wherein malignant T cells inadvertently transduced to express the CAR become treatment-resistant. Thus targeting T-cell disease ideally requires an allogeneic “off-the-shelf” fratricide-resistant CAR T-cell product. This can be achieved by multiplex genome editing of T cells prior to transduction with the CAR-expressing vector. Genome editing of the target T-cell antigen via CRISPR/Cas9 technology would prevent fratricide, while knocking down T-cell receptor (TCR) expression through T-cell receptor alpha chain (TRAC) locus editing would prevent life-threatening graft- versus-host disease. However, new delivery technologies are needed to facilitate production of T-cell therapies requiring multiple genome edits. Inefficient transfection and combinatorial stochasticity can produce a final product that contain subsets of cells that are unsafe or ineffective, decreasing yield as well as product potency. The current goal standard is to perform knockout edits using a non-viral delivery system through electroporation. Electroporation when conducted serially for multiple genome edits results in a substantial decrease in cell proliferation and low yield. Alternatively, when performed as a batch process, electroporation can result in the interference of CRISPR edits, or worse, a plethora of double strand breaks that culminate in genomic instability and low proliferation in vivo. In this collaborative multiple principle investigator (mPI) proposal, we plan to test a novel microfluidic transfection technology to generate an effective CAR T-cell product for T-cell malignancies. Our microfluidic platform, called volume exchange for convective transfer (VECT) mechanoporation, is a non-viral, biomechanical approach that enables efficient delivery of genome editing products into the cell interior. It has the potential to permit multiple CRISPR edits with high transfection efficiency and viability, while being gentle enough to avoid detrimental off-target damage to therapeutic cells. VECT mechanoporation has shown low damage to the nucleus of T cells and therefore, offers a route to produce more proliferative therapeutic T cells. In Aim 1, we will establish the microfluidic device and process parameters to optimally deliver CD5 and TRAC CRISPR-Cas9 editing molecules to T cells, in both serial and multiplexed approaches. In Aim 2, edited T cells will be transduced with CD5-CAR encoding lentiviral vector and cytotoxicity will be tested in in vitro and in vivo experiments.
项目概要 嵌合抗原受体 (CAR) T 细胞疗法在治疗 B 细胞方面取得了广泛成功 然而,很少有研究评估 CAR T 细胞疗法用于治疗 T 细胞 将这种疗法转化为 T 细胞疾病存在两个主要的制造挑战。 由于恶性T细胞上缺乏癌症特异性抗原,靶向T细胞抗原的CAR T细胞会经历 自相残杀,导致CAR T细胞产品的有效扩增变得困难。 其次,分离困难。 白细胞分离过程中的健康 T 细胞会导致产品污染,从而无意中感染恶性 T 细胞 转导表达 CAR 后会产生治疗耐药性,因此理想情况下,靶向 T 细胞疾病需要一种治疗方法。 同种异体“现成”抗自相残杀 CAR T 细胞产品可以通过多重基因组来实现。 在用 CAR 表达载体转导之前对 T 细胞进行基因组编辑。 通过 CRISPR/Cas9 技术的抗原可以防止自相残杀,同时敲低 T 细胞受体 (TCR) 通过 T 细胞受体 α 链 (TRAC) 基因座编辑表达可以防止危及生命的移植物 然而,需要新的递送技术来促进 T 细胞疗法的生产。 需要多次基因组编辑,低效的转染和组合随机性才能产生最终的结果。 产品含有不安全或无效的细胞子集,从而降低产量和产品效力。 当前的目标标准是使用非病毒传递系统通过 连续进行多个基因组编辑时,电穿孔会产生大量的结果。 或者,当作为批处理进行时,电穿孔会导致细胞增殖减少和产量低。 可能会导致 CRISPR 编辑的干扰,或更糟糕的是,导致大量双链断裂,最终导致 在这个合作的多学科研究者(mPI)中,基因组不稳定和体内低增殖。 根据提案,我们计划测试一种新型微流体转染技术来产生有效的 CAR T 细胞 我们的微流体平台,称为对流转移体积交换。 (VECT) 机械穿孔是一种非病毒生物力学方法,能够有效传递基因组 它有可能允许高转染的多次 CRISPR 编辑。 效率和活力,同时足够温和,以避免疼痛对治疗细胞的脱靶损伤。 VECT 机械穿孔显示出对 T 细胞核的损伤较低,因此提供了一条途径 产生更多的增殖性治疗性 T 细胞 在目标 1 中,我们将建立微流体装置和工艺。 参数以最佳方式将 CD5 和 TRAC CRISPR-Cas9 编辑分子以连续和 在目标 2 中,将用编码 CD5-CAR 的慢病毒载体转导编辑后的 ​​T 细胞。 细胞毒性将在体外和体内实验中进行测试。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sunil Sudhir Raikar其他文献

Sunil Sudhir Raikar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sunil Sudhir Raikar', 18)}}的其他基金

Gamma delta T-cell immunotherapy for T-cell acute lymphoblastic leukemia
T 细胞急性淋巴细胞白血病的 Gamma Delta T 细胞免疫疗法
  • 批准号:
    10593051
  • 财政年份:
    2020
  • 资助金额:
    $ 17.32万
  • 项目类别:
Gamma delta T-cell immunotherapy for T-cell acute lymphoblastic leukemia
T 细胞急性淋巴细胞白血病的 Gamma Delta T 细胞免疫疗法
  • 批准号:
    10368969
  • 财政年份:
    2020
  • 资助金额:
    $ 17.32万
  • 项目类别:

相似国自然基金

乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
  • 批准号:
    82301880
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
  • 批准号:
    82300031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
  • 批准号:
    72303209
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
  • 批准号:
    32360323
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
  • 批准号:
    32371226
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Allogeneic BAFF Ligand Based CAR T Cells as a Novel Therapy for B Cell Malignancies
基于同种异体 BAFF 配体的 CAR T 细胞作为 B 细胞恶性肿瘤的新疗法
  • 批准号:
    10698759
  • 财政年份:
    2023
  • 资助金额:
    $ 17.32万
  • 项目类别:
Development of a treatment for durable remission of HIV using transposon engineered CAR-T and NK cells
使用转座子工程 CAR-T 和 NK 细胞开发持久缓解 HIV 的治疗方法
  • 批准号:
    10599604
  • 财政年份:
    2022
  • 资助金额:
    $ 17.32万
  • 项目类别:
Mechanisms of antibody-mediated lung Injury after blood transfusion
输血后抗体介导的肺损伤机制
  • 批准号:
    10318593
  • 财政年份:
    2019
  • 资助金额:
    $ 17.32万
  • 项目类别:
Human embryonic stem cell-derived mesenchymal stromal cell therapy for lupus nephritis
人胚胎干细胞来源的间充质基质细胞治疗狼疮性肾炎
  • 批准号:
    8973041
  • 财政年份:
    2015
  • 资助金额:
    $ 17.32万
  • 项目类别:
Role of the thymic epithelium on the outcome of allogeneic transplantation
胸腺上皮对同种异体移植结果的作用
  • 批准号:
    8308335
  • 财政年份:
    2011
  • 资助金额:
    $ 17.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了