The DNA damage response of fast-cycling erythroblasts
快速循环有红细胞的DNA损伤反应
基本信息
- 批准号:10317904
- 负责人:
- 金额:$ 59.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-25 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnemiaBiochemicalBone MarrowBone Marrow CellsCFU-ECell CycleCell MaturationCell SurvivalCell divisionCellsChromatidsCopy Number PolymorphismCoupledDNA DamageDNA Interstrand CrosslinkingDNA RepairDNA biosynthesisDNA replication forkDataDevelopmentDevelopmental BiologyDiseaseErythroblastsErythrocytesErythroidErythroid CellsErythropoiesisErythropoietin ReceptorEventFailureFanconi Anemia pathwayFanconi&aposs AnemiaGenesGenetic TranscriptionGenomeGenomic InstabilityGoalsLeadLifeMeasuresMitomycin CModalityMusOncogenesPathway interactionsPhysiologicalProcessReporterResistanceS PhaseSiteSpeedStudy modelsSystemTestingWild Type Mousebasecostdisabilitygene inductiongenome integritygenome sequencinghomologous recombinationin vivoindexinginhibitor/antagonistmouse modelnovelprogenitorprogramsrepairedreplication stressresponseself-renewalwhole genome
项目摘要
Project Summary Erythropoiesis, or the process of red cell formation, is continuous throughout life. Its
study helps elucidate erythroid disorders, most notably anemia, which accounts for 8.8% of all disability
globally. It is also an accessible model for studying fundamental questions in developmental biology. This
proposal is based on recent finding that a key erythroid cell fate decision is associated with dramatic
shortening of S phase. Cell fate decisions in some other developmental systems are similarly associated with a
faster S phase. A faster S phase might be accomplished at the cost of genomic instability, as in oncogene-
induced replicative stress. However, studies of the relationships between a physiologically faster S phase and
the DNA damage response in normal development are lacking. This project’s goal is to determine whether the
unusually fast S phase of the erythroid developmental switch entails altered DNA replication fidelity and/or
alterations in the DNA damage response.
Early erythroid progenitors, termed ‘colony-forming-unit-erythroid’ (CFU-e), undergo several self-renewal cell
divisions before transitioning into Erythroid Terminal Differentiation (ETD), where they begin to express red cell
genes. The transition from self-renewing CFU-e progenitors to maturing ETD erythroblasts is a rapid
transcriptional switch that is synchronized with, and dependent on, a single cell cycle S phase. Strikingly, the
S-phase of the CFU-e/ETD switch is of uniquely short duration, lasting only 4 hr, compared with 7 hr in
preceding CFU-e cycles, as a result of a global, 50% increase in the speed of replication forks. These changes
in S phase speed are required for the CFU-e/ETD switch; the slower S phase of CFU-e progenitors promotes
their self-renewal, while the fast S phase of early ETD promotes erythroid gene induction. It might be expected
that the fast S phase of early ETD erythroblasts would exact a ‘cost’ of increased replication fork stalling events
(‘replication stress’) and increased genomic instability. our experimental AIMS test two opposing but not
necessarily mutually exclusive hypotheses:
Hypothesis 1: The faster S phase of early ETD is achieved at a cost of lower quality replication.
Hypothesis 2: The faster S phase of early ETD reflects “supercharged” replication-coupled DNA repair.
AIM 1 will analyze the quality of DNA replication in fast-cycling early ETD erythroblasts. AIM 2 will determine
how the DNA damage response of fast-cycling ETD erythroblasts differs from that of their slower-cycling CFU-
e precursors. AIM 3 will determine whether the faster S phase and the altered DNA damage response of early
ETD are genetically separable.
项目摘要红细胞生成或红细胞形成过程是一生的连续。它是
研究有助于阐明红细胞疾病,最著名的是贫血,占所有残疾的8.8%
全球。它也是一个可访问的模型,用于研究发育生物学中的基本问题。这
提案是基于最近的发现,即关键的红细胞命运决定与戏剧性有关
S相缩短。其他一些发育系统中的细胞脂肪决策与
更快的阶段。更快的s相可能是以基因组不稳定性为代价来实现的,如癌基因 -
诱导复制应力。但是,研究身体更快的阶段与
缺乏正常发育中的DNA损伤响应。该项目的目标是确定是否
红细胞发育开关实体的异常快速S阶段改变了DNA复制保真度和/或
DNA损伤反应的改变。
早期的红细胞祖细胞,称为“菌落形成单位 - 侵蚀性”(CFU-E),经历了几个自我更新细胞
过渡到红细胞终末分化(ETD)之前,它们开始表达红细胞
基因。从自我更新CFU-E祖细胞过渡到成熟的ETD红细胞是一个迅速
转录开关与单个细胞周期s相同步并取决于单个单元期。令人惊讶的是,
CFU-E/ETD开关的S期独特的持续时间仅持续4小时,而7小时内则持续4小时
由于全球循环的结果,复制叉速度上升了50%。这些变化
在S中,CFU-E/ETD开关需要相位速度; CFU-E祖细胞的S阶段较慢促进
他们的自我更新,而ETD早期的快速S阶段促进了红细胞基因诱导。可能是可以预料的
早期ETD红细胞的快速S阶段完全将是增加复制叉停滞事件的“成本”
(“复制应力”)和增加的基因组不稳定性。我们的实验目的测试两个相对但没有测试
一定是相互排斥的假设:
假设1:以质量较低的复制成本实现了早期ETD的更快S阶段。
假设2:早期ETD的S阶段更快地反映了“增压”复制耦合的DNA修复。
AIM 1将分析快速循环早期ETD成年细胞中DNA复制的质量。 AIM 2将确定
快速循环ETD的DNA损伤响应与较慢的循环cfu-的DNA损伤反应不同
E前体。 AIM 3将确定较快的S相和早期的DNA损伤响应是否改变
ETD在遗传上是分开的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph Scully其他文献
Ralph Scully的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph Scully', 18)}}的其他基金
Stalled replication fork repair in cancer predisposition and cancertherapy
癌症易感性和癌症治疗中停滞的复制叉修复
- 批准号:
10517824 - 财政年份:2022
- 资助金额:
$ 59.8万 - 项目类别:
Stalled replication fork repair in cancer predisposition and cancertherapy
癌症易感性和癌症治疗中停滞的复制叉修复
- 批准号:
10681456 - 财政年份:2022
- 资助金额:
$ 59.8万 - 项目类别:
The DNA damage response of fast-cycling erythroblasts
快速循环有红细胞的DNA损伤反应
- 批准号:
10473898 - 财政年份:2021
- 资助金额:
$ 59.8万 - 项目类别:
The DNA damage response of fast-cycling erythroblasts
快速循环有红细胞的DNA损伤反应
- 批准号:
10674034 - 财政年份:2021
- 资助金额:
$ 59.8万 - 项目类别:
Regulation of stalled fork repair in mammalian cells
哺乳动物细胞中停滞叉修复的调节
- 批准号:
10434669 - 财政年份:2019
- 资助金额:
$ 59.8万 - 项目类别:
Regulation of stalled fork repair in mammalian cells
哺乳动物细胞中停滞叉修复的调节
- 批准号:
10187598 - 财政年份:2019
- 资助金额:
$ 59.8万 - 项目类别:
Regulation of stalled fork repair in mammalian cells
哺乳动物细胞中停滞叉修复的调节
- 批准号:
10006891 - 财政年份:2019
- 资助金额:
$ 59.8万 - 项目类别:
A mouse model for studying homologous recombination fidelity during aging
用于研究衰老过程中同源重组保真度的小鼠模型
- 批准号:
8989960 - 财政年份:2015
- 资助金额:
$ 59.8万 - 项目类别:
相似国自然基金
红系造血岛巨噬细胞TLR8信号激活在再生障碍性贫血中机制研究
- 批准号:82370144
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
探究引起范科尼贫血症的内源DNA损伤
- 批准号:32371353
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
限食通过下调MS4A3促进红细胞生成的机制研究及其在贫血人群中的临床运用
- 批准号:82360027
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
偶氮苯连接双地拉罗司荧光共振能量转移开关祛铁剂的构建及用于β-地中海贫血铁负荷的检测和清除
- 批准号:82360706
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
骨髓树突状细胞TLR1/2/8-MyD88通路在再生障碍性贫血发生发展中的作用
- 批准号:82370142
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Regulation of erythroid iron metabolism by the CLPX unfoldase
CLPX 解折叠酶对红细胞铁代谢的调节
- 批准号:
10716494 - 财政年份:2023
- 资助金额:
$ 59.8万 - 项目类别:
Modeling PIEZO associated diseases in Caenorhabditis elegans: from genetics to mechanism
秀丽隐杆线虫 PIEZO 相关疾病建模:从遗传学到机制
- 批准号:
10866791 - 财政年份:2023
- 资助金额:
$ 59.8万 - 项目类别:
Ultra-sensitive, unbiased, high-throughput, biochemical CHANGE-seq genome-wide activity and gRNA sequencing assays for therapeutic genome editing INDs
用于治疗性基因组编辑 IND 的超灵敏、无偏倚、高通量、生化 CHANGE-seq 全基因组活性和 gRNA 测序分析
- 批准号:
10668824 - 财政年份:2023
- 资助金额:
$ 59.8万 - 项目类别:
CD39-carrying extracellular vesicles regulate pulmonary thrombosis in Sickle Cell Disease
携带CD39的细胞外囊泡调节镰状细胞病中的肺血栓形成
- 批准号:
10736531 - 财政年份:2023
- 资助金额:
$ 59.8万 - 项目类别:
Neurovascular frataxin and cognitive dysfunction in sickle cell disease
镰状细胞病中的神经血管 frataxin 和认知功能障碍
- 批准号:
10810463 - 财政年份:2023
- 资助金额:
$ 59.8万 - 项目类别: