MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
基本信息
- 批准号:10312783
- 负责人:
- 金额:$ 7.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAgricultureArchitectureBasic ScienceBehaviorBibliographyBioinformaticsBiological ModelsBiophysicsCCR5 geneCRISPR/Cas technologyCell LineCell LineageCell modelCellsChargeClinicalClustered Regularly Interspaced Short Palindromic RepeatsCodeCystic Fibrosis Transmembrane Conductance RegulatorDNADNA BindingDNA Modification ProcessDNA RepairDNA Repair GeneDNA Repair PathwayDNA SequenceDataDevelopmentDiseaseDissociationEngineeringEngraftmentEnzymesEquilibriumErythroid CellsFetal HemoglobinFundingGene TargetingGene-ModifiedGenerationsGenesGenomeGenome engineeringGenomicsGlobinHalf-LifeHematopoietic stem cellsHemoglobinopathiesHumanIndividualIndustrializationInsectaKineticsLeadLesionLettersMedicalModificationMonoamine Oxidase BOpen Reading FramesOutcomePathway interactionsPerformancePhenotypeProblem SolvingPropertyProteinsProtocols documentationPublicationsPublishingReagentRegulationRepressionResearchSequence HomologsSeveritiesSiteSpecificityStructureSurfaceSystemT-LymphocyteTechnologyTestingTextTherapeuticThermodynamicsTransgenic OrganismsTransplantationUp-RegulationViralbeta Globinbiophysical propertieschimeric antigen receptor T cellsengineered nucleasesfetalgene correctiongene therapygenome editinggenomic locusimprovedin vivomRNA deliverymonomernanoparticlenovelnucleaseprogrammed cell death protein 1programsrepairedscaffoldstem cell engraftmenttargeted nucleasestranscription activator-like effector nucleasestreatment optimizationzinc finger nuclease
项目摘要
Project Summary
Zinc finger nucleases ('ZFNs'), TAL effector nucleases '(TALENs'), CRISPR-Cas9 nucleases (‘CRISPRs’) and
meganuclease/TAL effector fusions ('MegaTALs', which are the focus of this project) are all highly specific
nucleases that can generate single- or double-strand breaks at individual genomic loci. Each of these
nuclease platforms is being developed for a wide variety of applications, including basic research, industrial
and agricultural genome engineering, cellular therapeutics (for example, CAR T-cells), and direct gene therapy.
Although CRISPR nucleases are now the system of choice for almost all genome engineering, their utility and
performance for therapeutic applications is not a solved problem. For clinical use, nuclease performance is
defined by the ease of its packaging and delivery, its activity and specificity in a living cell, and the balance of
competing DNA repair outcomes. MegaTAL nucleases display several favorable properties for such purposes,
including monomeric structures, small size, high activity and specificity, and unique cleavage mechanisms that
produce 3' DNA overhangs. We have generated a large number of engineered MegaTAL nucleases and have
described their ex vivo and in vivo performance in primary human cells and transgenic organisms, as
summarized in the full text of this project description.
While all these four of these platforms are being studied and used for gene therapy, optimization of their
properties and behaviors (particularly to drive gene modification via homology-driven correction, rather than
gene disruption via mutagenic end-joining) is an important ongoing priority. For any nuclease, the kinetics of
DNA binding, cleavage and dissociation (and the corresponding affinity and half-life at each step) can alter the
composition, structure and dynamic behavior of the DSB lesion in a manner that might affect each pathway
differently. This can lead to significant differences in repair outcomes, as illustrated via our preliminary data.
In this renewal application, we propose to leverage our engineered nuclease constructs and recently published
results for two Specific Aims: (1) Determine the biophysical and enzymatic parameters of nuclease function
that most strongly influence DNA repair outcomes and enhance gene modification via HDR. The overall
premise for the first aim is that individual DNA repair pathways and their protein factors are uniquely sensitive
to differences in the mechanisms and biophysical behaviors of the enzymes that generate a DSB. (2) Optimize
our '2nd generation' of MegaTAL scaffolds (that are reduced in size and that appear to display improved
activity and specificity) and corresponding mRNA delivery systems in genome editing directed towards primary
hematopoietic stem cells (HSCs). The overall premise for the second aim is that the highly variable (but quite
controllable) properties of MegaTALs and their delivery systems are particularly appropriate for assessing the
efficiency of genome modification and subsequent persistence of gene edited primary cells, both in culture and
upon transplantation and engraftment.
项目概要
锌指核酸酶('ZFN')、TAL效应核酸酶'(TALENs')、CRISPR-Cas9核酸酶('CRISPRs')和
大范围核酸酶/TAL 效应子融合(“MegaTAL”,这是该项目的重点)都是高度特异性的
可以在各个基因组位点产生单链或双链断裂的核酸酶。
核酸酶平台正在开发用于各种应用,包括基础研究、工业
农业基因组工程、细胞疗法(例如 CAR T 细胞)和直接基因疗法。
尽管 CRISPR 核酸酶现在是几乎所有基因组工程的首选系统,但它们的实用性和
对于临床应用来说,核酸酶的性能是一个尚未解决的问题。
其定义是其包装和运输的难易程度、其在活细胞中的活性和特异性,以及
竞争性 DNA 修复结果。 MegaTAL 核酸酶显示出多种有利的特性,
包括单体结构、小尺寸、高活性和特异性以及独特的切割机制,
产生 3' DNA 突出端 我们已经生成了大量的工程 MegaTAL 核酸酶,并已获得。
描述了它们在原代人类细胞和转基因生物中的离体和体内表现,如
总结在本项目描述的全文中。
虽然所有这四个平台都正在研究并用于基因治疗,但它们的优化
属性和行为(特别是通过同源驱动的校正来驱动基因修饰,而不是
对于任何核酸酶来说,通过诱变末端连接破坏基因)是一个重要的持续优先事项。
DNA 结合、切割和解离(以及每个步骤相应的亲和力和半衰期)可以改变
DSB 病变的组成、结构和动态行为可能会影响每个通路
正如我们的初步数据所示,这可能会导致修复结果出现显着差异。
在此更新申请中,我们建议利用我们的工程核酸酶构建体和最近发表的
两个具体目标的结果:(1)确定核酸酶功能的生物物理和酶学参数
最强烈地影响 DNA 修复结果并通过 HDR 增强基因修饰。
第一个目标的前提是个体 DNA 修复途径及其蛋白质因子具有独特的敏感性
(2)优化
我们的“第二代”MegaTAL 支架(尺寸减小,并且似乎表现出改进
活性和特异性)以及针对初级基因组编辑的相应 mRNA 传递系统
第二个目标的总体前提是造血干细胞(HSC)的高度可变(但相当大)。
MegaTAL 及其递送系统的可控)特性特别适合评估
基因组修饰的效率以及随后基因编辑原代细胞在培养物和
移植和植入后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY L. STODDARD其他文献
BARRY L. STODDARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY L. STODDARD', 18)}}的其他基金
Biophysical and structural studies of protein and enzyme mechanism, evolution, and engineering
蛋白质和酶机制、进化和工程的生物物理和结构研究
- 批准号:
10550521 - 财政年份:2023
- 资助金额:
$ 7.53万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10543489 - 财政年份:2021
- 资助金额:
$ 7.53万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10643001 - 财政年份:2021
- 资助金额:
$ 7.53万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10372918 - 财政年份:2021
- 资助金额:
$ 7.53万 - 项目类别:
Determination of the basis of ligand binding via engineering and crystallography
通过工程和晶体学确定配体结合的基础
- 批准号:
9134178 - 财政年份:2015
- 资助金额:
$ 7.53万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
10080736 - 财政年份:2014
- 资助金额:
$ 7.53万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
10615422 - 财政年份:2014
- 资助金额:
$ 7.53万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
8629497 - 财政年份:2014
- 资助金额:
$ 7.53万 - 项目类别:
Structural and Biophysical Characterization of Engineered Homing Endonucleases (C
工程化归巢核酸内切酶 (C) 的结构和生物物理表征
- 批准号:
7858482 - 财政年份:2007
- 资助金额:
$ 7.53万 - 项目类别:
Structural and Biophysical Characterization of Engineered Homing Endonucleases (C
工程化归巢核酸内切酶 (C) 的结构和生物物理表征
- 批准号:
7651365 - 财政年份:2007
- 资助金额:
$ 7.53万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Development of a rapid screening test for the detection of dihydroanatoxin-a
开发检测二氢虾毒素-a 的快速筛选试验
- 批准号:
10545266 - 财政年份:2023
- 资助金额:
$ 7.53万 - 项目类别:
The impact of a neonicotinoid pesticide on neural functions underlying learning and memory
新烟碱类农药对学习和记忆神经功能的影响
- 批准号:
10646631 - 财政年份:2023
- 资助金额:
$ 7.53万 - 项目类别:
Resistance Variation to Endemic Disease as a Risk Factor to New Disease Emergence
对地方病的抵抗力变化是新疾病出现的危险因素
- 批准号:
10238172 - 财政年份:2020
- 资助金额:
$ 7.53万 - 项目类别:
Hit-and-Run transcription: The impact of transient interactions in dynamic gene regulatory networks that mediate rapid nutrient signaling
打了就跑的转录:介导快速营养信号传导的动态基因调控网络中瞬时相互作用的影响
- 批准号:
10249072 - 财政年份:2020
- 资助金额:
$ 7.53万 - 项目类别:
Hit-and-Run transcription: The impact of transient interactions in dynamic gene regulatory networks that mediate rapid nutrient signaling
打了就跑的转录:介导快速营养信号传导的动态基因调控网络中瞬时相互作用的影响
- 批准号:
10673969 - 财政年份:2020
- 资助金额:
$ 7.53万 - 项目类别: